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METHODOLOGIES FOR BUILT-IN SELF-TEST INSERTION 

IN VLSI CIRCUITS 

ACROSS THE DESIGN HIERARCHY 

Abstract 

by 

JOAN ELIZABETH CARLETTA 

Methodologies for built-in self-test (BIST) insertion in VLSI circuits are presented for 

three different levels of design abstraction. The methodologies are designed to be used 

during the design flow of application specific integrated circuits (ASICs), which starts 

at the algorithmic level in the behavioral domain and moves to the register transfer 

level in the structural domain, and finally to the gate level in the structural domain. At 

each level, the methodology is based on the use of testability metrics to identify and 

remove points of low testability in a circuit. By quantifying the properties that make a 

BIST scheme successful, the testability metrics provide a way to measure test quality 

implicitly, without resorting to fault simulation, which is both expensive and not avail- 

able at the higher levels of design abstraction. The testability metrics are computed 

using a Markov chain model. 
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Fault coverage curves show that when the BIST insertion methodologies are applied, 

the resulting circuits are significantly easier to test than circuits designed without 

regard to testability. Wherever fault coverage results are given, layout areas, transistor 

counts, and critical delays are also given so that the trade-off between a circuit's test- 

ability and its area and performance can be fully appreciated. 

Examples of our insertion methodologies employ three different BIST schemes: con- 

ventional BIST, circular BIST, and the circular self-test path technique. For circular 

BIST and the circular self-test path technique, special care must be taken when adding 

the test circuitry to a design. This work explores the problems that can occur, and out- 

lines structural constraints that should be followed to avoid the problems. 

The three BIST insertion methodologies introduced complement one another, rather 

than compete with one another. Although it is desirable to consider testability as early 

as possible in the design flow, the algorithmic level methodology does not supercede 

the register transfer and gate level methodologies. We show that each methodology 

has its own area of application. 
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chapter l Introduction 

As very large scale integration (VLSI) technology has progressed, and it has become 

possible to put more and more transistors on a single integrated circuit, testing a circuit 

to see whether it is functioning properly has become an increasingly difficult task. A 

variety of techniques for alleviating the testing problem have been developed. This 

dissertation focuses on one increasingly popular technique, built-in self-test (BIST). 

The main idea behind BIST is to put everything that is needed to test the circuit 

directly on the chip, so that the circuit is capable of testing itself. The main thrust of 

the dissertation is the development of methodologies for automatic insertion of BIST 

into VLSI application specific integrated circuits (ASICs); given a circuit, we would 

like to automatically modify the circuit, adding the circuitry that is necessary to per- 

form a built-in self-test. As we do this, we must keep in mind that the addition of cir- 

cuitry to the chip, while making the chip easier to test, can also have the ill effects of 

making the chip larger in area (and therefore higher in cost) and slower in speed. 

Before we can devise methodologies for BIST insertion, we must have a clear under- 

standing of how ASICs are designed. Contemporary ASIC design is a process consist- 



ing of many steps, during which a design flows from one level of design abstraction to 

another. Typically, a design begins as an "algorithmic" description, almost like a com- 

puter program, that specifies the function that the circuit should perform. At this level, 

the design is a single "black box"; we know what the circuit should do, but not how it 

should do it. As the design moves from level to level, synthesis tools are used to fill in 

more and more of the details of how the circuit should be implemented. Early on, we 

may view the circuit as an interconnection of complex hardware units like adders and 

multipliers (each still a "black box"); later, the circuit will become a netlist of gates, 

and ultimately it will be expressed in terms of layout. 

Built-in self-test insertion can be done at any point during the ASIC design flow. Gen- 

erally speaking, it is best to begin thinking about testing early on in the design flow, 

since how a circuit is designed has a profound impact on how easy it is to test. Once 

low level decisions about a circuit implementation have been made, it may be too late 

to easily incorporate testability; making modifications for the sake of testability may 

require major changes in the design. However, as we shall see later, there are times 

when we can not begin testability consideration at the highest levels of design abstrac- 

tion. Therefore, there is need for BIST insertion methodologies that operate over the 

whole range of design abstraction levels. 



1.1     Problem Definition 

The goal of this work is the development of methodologies for automatic BIST inser- 

tion, in coordination with design synthesis tools. In this work, we describe three sepa- 

rate methodologies for BIST insertion, operating at three different levels of design 

abstraction, and therefore at three different points in the ASIC design flow. The first 

works with logic level design descriptions. The second, at a higher level, works with 

register transfer level descriptions. The third works at the highest level of the ASIC 

design flow; it operates on algorithmic level design descriptions. Despite differences 

in design level, the methodologies have many similarities. All take as input a design 

description, and add BIST features to that design description so that when the descrip- 

tion is synthesized to create a physical implementation, that physical circuit can be 

easily tested. Furthermore, all three methodologies keep in mind four goals: 

• to minimize the effect of the BIST insertion on the overall area. 

• to minimize the effect of the BIST insertion on the system performance. 

• to maximize the fault coverage that can be obtained during test. 

• to minimize the test time required to obtain that level of fault coverage. 

All use a unified set of testability metrics to quantify the testability of the original cir- 

cuit and identify trouble spots in the design. These metrics provide a mechanism for 

trading off area overhead and system performance against obtainable fault coverage 

and required test time. 

We now briefly describe the approach for each of the three methodologies. 



1.1.1 Logic level BIST insertion 

The first methodology operates on logic level sequential circuits. It starts by assuming 

a minimal BIST paradigm, in which the primary inputs of a circuit are driven by a test 

pattern generation register (TPGR) that provides stimuli for the circuit, and the pri- 

mary outputs are fed into a multiple input shift register (MISR) that analyzes the 

responses of the circuit to the stimuli. Thus, the primary inputs are assumed controlla- 

ble, and the primary outputs are assumed observable. It then computes the testability 

metrics for the internal signals of the circuit; signals with low testability metrics desig- 

nate possible trouble spots when testing the physical circuit. A two step approach first 

improves the testability metrics for the flip-flops, so that each combinational logic 

block receives high quality test patterns, and then improves the testability metrics of 

internal signals. Two different kinds of insertion, multiplexer-based test point insertion 

and circular BIST insertion, are used. The output of the methodology is a logic level 

circuit with added circuitry that is much more easily tested than the original. 

1.1.2 Register transfer level BIST insertion 

Our second methodology operates on design descriptions at (he register transfer level. 

At this level, circuits are described as interconnections of arithmetic logic units 

(ALUs) and registers. Like our logic level BIST insertion methodology, our register 

transfer level BIST insertion methodology begins with a circuit with a minimal 

amount of BIST; the only BIST added to the circuit is that necessary to drive the pri- 

mary input registers of the circuit with test patterns, and to compact the responses from 



the primary output registers. The methodology then computes testability metrics for 

the signals of the circuit. Here, the signals are the width of the words in the datapath. 

The metrics values are used to guide the BIST insertion by finding potential testability 

problems in the datapath; thus, internal registers of the datapath are replaced with 

BIST registers only when necessary. The output of the methodology is a modified ver- 

sion of the register transfer level circuit, with added circuitry to make the design easier 

to test. 

1.1.3     Algorithmic level BIST insertion 

The goal of our work at the algorithmic level1 is to develop a methodology for BIST 

insertion that achieves high fault coverage for both the datapath and the controller cre- 

ated during the ASIC design flow. The methodology is essentially a pre-synthesis pro- 

cess that is meant to be independent of the high level synthesis tool used. Thus, our 

algorithmic level BIST insertion methodology takes an algorithmic level design 

description as input, and modifies it to create another algorithmic level description 

such that when the modified version is synthesized using the normal ASIC design 

flow, the result is a physical circuit that is easily tested using a simple BIST scheme. 

1. Some researchers prefer the term "behavioral level" to the term "algorithmic level" used here. 



1.2     Organization of Dissertation 

The motivation for this work lies in BIST insertion, which is the process of adding 

BIST features to a circuit. We consider a number of different BIST methodologies, 

including conventional BIST, circular BIST, and the circular self-test path technique. 

Chapter Two provides background by defining some fundamental aspects of design- 

for-testability. Chapter Three is a survey of recent related research in design-for-test- 

ability, especially testability insertion; we cover insertion for both partial scan and 

BIST because although the two are different applications, much of the underlying 

motivation is the same. Chapter Four presents mathematical definitions for the test- 

ability metrics that form the cornerstone of all our BIST insertion procedures; these 

metrics are used to pinpoint areas of a design that have testability problems. Chapter 

Five describes a Markov model that is used to compute the testability metrics. 

Regardless of the level of design abstraction at which a BIST insertion procedure 

operates, the first step in insertion is that of test point selection, or deciding where to 

place test elements (whether registers or flip-flops) within a circuit. For the circular 

self-test path technique, insertion requires a second step, that of circular self-test path 

formation, in which the selected registers are chained together in a particular order, 

each with a particular orientation or shift direction. This second step results in some 

difficulties unique to the circular self-test path technique. Chapter Six describes these 

difficulties, and shows how they can be avoided by placing constraints on the structure 

of the circular self-test path. 



The next three chapters provide specifics of our BIST insertion procedures at three dif- 

ferent levels of design abstraction. Chapter Seven demonstrates our logic level inser- 

tion methodology, using a submodule of an industrial design as both motivation and 

example. Chapter Eight discusses a similar BIST insertion methodology at the register 

transfer level, using examples to demonstrate how the metrics facilitate test point 

selection. Chapter Nine moves BIST insertion into the behavioral domain by consider- 

ing testability at the algorithmic level. Finally, Chapter Ten presents conclusions, and 

points towards future research. 



chapter 2 Fundamentüls 

This chapter provides background material preliminary to the main work of this dis- 

sertation, and may be safely skipped by readers already acquainted with the design of 

application specific integrated circuits (ASICs) and design-for-testability. The chapter 

begins in Section 2.1 with a formal description of the levels of abstraction at which a 

design can be described. A typical ASIC design flow, from concept to silicon, is pre- 

sented in Section 2.2. Section 2.3 describes the importance of design-for-testability 

(DFT), which is the consideration of testability in the course of the design flow. There 

are the two basic approaches to test, and deterministic and pseudorandom; Section 2.4 

compares them, outlining the advantages and disadvantages of each. Design-for-test- 

ability methodologies specific to each approach are introduced; these include both 

scan methodologies for deterministic test in Section 2.5 and built-in self-test method- 

ologies for pseudorandom test in Section 2.6. Section 2.7 describes how design-for- 

testability can be integrated with the design flow. Section 2.8 introduces two key com- 

ponents of testability, controllability and observability. Section 2.9 is a summary. 



2.1     Levels of Design 

The levels of abstraction at which a design can be specified are illustrated in Figure 

2-1, a Y-chart introduced in [GaKu83]. The three axes represent the three domains in 
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Chip/Board 

Block/Chip 

Physical Domain 

Figure 2-1. Levels of design abstraction. 

which a design can be specified. The behavioral domain views a design in terms of its 

function or input-output relationship, without any notion of physical implementation. 

The structural domain views a design as a netlist of interconnected components, 

where each component is a "black box" element described behaviorally. The physical 

domain views a design in terms of its physical or geometric properties. In each 
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domain, a range of levels of abstraction are possible, with the more abstract levels at 

the periphery of the chart. The points on the axes are labelled with a typical view of the 

design at the given level and in the given domain. For example, from the Y-chart we 

can see that a register transfer level (RTL) description of a design in the structural 

domain consists of an interconnection of arithmetic logic units (ALUs), registers, and 

multiplexers. If we described this same design at the circuit level in the physical 

domain, it would consist of a number of rectangles and polygons in polysilicon, metal, 

and other materials used in integrated circuits. 

2.2    ASIC Design Flow 

An ASIC design flow starts with a design description at the algorithmic level in the 

behavioral domain, and traverses the Y-chart to create a complete physical implemen- 

tation for the design. A typical path taken is shown in Figure 2-2. The tools used to 

perform the traversal are as follows: 

A. High Level Synthesis takes as input a design described at the algorithmic level in 

the behavioral domain. This input is an algorithm describing the function that the 

final circuit is intended to perform. The output of high level synthesis is a regis- 

ter transfer level description in the structural domain. This description consists of 

two parts. The first part is a register transfer level datapath capable of performing 

the intended function. This datapath is described as an interconnection of arith- 

metic logic units, registers, and multiplexers; each of these interconnected com- 
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Gate, Flip-flop ', 
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Figure 2-2. Typical ASIC design flow in terms of the Y-chart of Figure 2-1. 

ponents is a "black box" described functionally. The second part is a control 

flow, usually in the form of a state diagram, that describes the way in which the 

datapath must be controlled in order for it to perform the intended function. 

B. Logic Level Synthesis takes the register transfer level datapath and transforms it 

into a logic level implementation in the structural domain. It does this by filling 

in the "black box" functional description of each component in the datapath with 

a logic level implementation. At this point, the control flow may also be synthe- 

sized to the logic level using a finite state machine implementation. 

C. Technology Mapping takes as input a gate level design description in the struc- 

tural domain. It moves the design into the physical domain by mapping the gates 

to standard cells from a given library. Layout is available for each standard cell. 
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D.     Placement and Routing take as input the standard cell implementation of the 

design in the physical domain. The standard cells are physically situated, and the 

interconnections between the cells are routed. The result is a layout of the overall 

design that is ready for fabrication. 

2.3     Importance of Design-for-Testability 

Traditionally, design and test have been considered two separate processes; one group 

of engineers completed the design of the circuit, and a separate group was responsible 

for building and testing the circuit. However, as advances in VLSI technology have 

made higher and higher package densities possible, this approach has become less and 

less feasible. Testability problems are caused primarily by an inability either to control 

a signal embedded within a circuit to some required value, or to observe the value of 

an embedded signal. As package density increases, the number of gates per pin 

increases. Since the internal parts of the chip can be controlled and observed only indi- 

rectly through the pins, this makes testing the chip more difficult. As a result, testabil- 

ity decreases dramatically, and the effort spent in testing a chip becomes a significant 

portion of the overall cost of getting a new design to market. 

Design-for-testability (DFT), or the consideration of testability during the design flow, 

was introduced in the 1970s as a remedy to decreasing testability. At the beginning, 

design-for-testability involved designing a circuit so that it had certain general proper- 

ties that made it easier to test; two such properties are that the design contain no asyn- 
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chronous logic and that it be easy to initialize to a known state [BaMS87]. Later, more 

structured DFT techniques were developed. Because the best choice of DFT technique 

depends on the test approach used, we now digress to introduce the two main 

approaches to test before coming back to the specifics of design-for-testability. When 

we return to design-for-testability, we will describe specific DFT techniques appropri- 

ate to each of the approaches. 

2.4    Approaches to Test 

The basic principle of test is to apply stimuli, or test patterns, to the circuit under test, 

and to analyze the responses of the circuit to the test patterns to determine whether the 

circuit is responding as expected. Test methods can be divided into two basic 

approaches, depending on the type of test pattern used. Deterministic test applies a set 

of test patterns that are tailor-made for the circuit in question, while pseudorandom 

test applies pseudorandomly generated test patterns. Each approach has advantages 

and disadvantages. Determining which test patterns to include in a deterministic test is 

generally computationally intensive, and requires an in-depth analysis of the circuit. 

This computation of test patterns is usually a one-time cost; however, if even small 

changes are made to the circuit design, the deterministic test may no longer be valid, 

and so re-computation of the test patterns may be necessary. In contrast, computing the 

test patterns for a pseudorandom test is simple, and the test patterns need not be 

changed when the design is changed. Since the test patterns in a deterministic test are 
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tailor-made for the circuit under test, they are of high quality; a small number of deter- 

ministic patterns can usually catch a large percentage of the faults of the circuit. With 

pseudorandom test, the patterns may not be of as high quality, so a greater number of 

patterns may be required. 

Deterministic and pseudorandom test also differ in the ways that the test patterns are 

typically generated during the course of the test. In general, it takes a large amount of 

hardware to generate a deterministic test; for this reason, the test pattern generation is 

usually done off-chip, and is the responsibility of automatic test equipment (ATE). In 

contrast, pseudorandom test patterns can be generated very simply with a minimal 

amount of hardware. This makes pseudorandom test amenable to built-in self-test 

(BIST) techniques [AgKS93a] [AgKS93b], for which all circuitry needed to test the 

circuit is placed directly on the chip. A number of different BIST methodologies exist, 

and will be described later in this chapter. All have in common the addition of test cir- 

cuitry to the chip to provide test patterns to the circuitry of the chip and to analyze the 

response of the circuitry of the chip to the test patterns. BIST techniques eliminate the 

need for expensive ATE; using BIST, the only input that a chip requires from its envi- 

ronment in the course of the test is an indication of when the test should begin. Simi- 

larly, the chip gives only limited output reporting the results of the test. 

Because all BIST circuitry is on-chip, test can be done at normal circuit speed; in con- 

trast, with deterministic tests using ATE, test must usually be done at a slower-than- 

normal rate. This means that BIST techniques have the capability to detect timing- 



15 

related problems that an off-chip deterministic test may miss. Another advantage of 

having all test circuitry directly on-chip is that the chip need not be placed in a special 

environment (i.e., into the socket of an ATE) during test; this means that BIST tech- 

niques are useful not only for chip level test, but also for board level test. Since the 

interaction of a chip with its environment during test is minimal, it is relatively simple 

to place a test controller on a board that asks each chip on the board to test itself. 

One disadvantage of BIST techniques is the area required on chip for the test circuitry. 

The addition of test circuitry can also cause some degradation in system performance, 

even when the chip is operating in normal (non-test) mode. Thus, a key problem that 

must be solved in order to make BIST practical is how to add BIST features to a circuit 

while having a minimal impact on overall area and performance. 

2.5    Scan Methodologies for Deterministic Test 

The problem of test pattern generation has been fully solved only for combinational 

logic. Because generating deterministic test patterns for sequential circuits can be pro- 

hibitively expensive, especially if those circuits have a high degree of feedback, scan 

methodologies are commonly used to simplify the problem [AbBF90] [BaMS87] 

[John89]. Essentially, scan serves to make the internal flip-flops of the circuit more 

directly controllable and observable; this is accomplished by adding an operating 

mode to the circuit in which the flip-flops form a simple shift register or scan chain. 
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For thefiill scan methodology, all internal flip-flops are made accessible by placing 

them in the scan chain. Since all flip-flops are now accessible, the problem of generat- 

ing test patterns for the circuit degenerates to that of generating test patterns for the 

combinational logic of the circuit. A specific test pattern is applied to the combina- 

tional logic by placing the scan chain in shift mode and shifting in the test pattern. 

Then, the scan chain is placed in normal mode, so that the circuit operates according to 

its designed function; when the circuit is clocked in normal mode, the test pattern is 

applied to the logic. At this point, the response of the combinational logic to the test 

pattern is clocked into the scan chain; by putting the scan chain back into shift mode, 

the response can be shifted out and observed directly. 

The partial scan methodology improves on the high hardware overhead of full scan by 

placing only a subset of the flip-flops of the circuit in the scan chain. A variety of tech- 

niques exist for deciding which of the flip-flops should be placed in the scan chain; 

some will be described in Chapter Three, which contains a survey of related research. 

2.6    BIST Methodologies for Pseudorandom Test 

All BIST methodologies are based on the use of on-chip test circuitry to provide test 

patterns to the circuitry of the chip and to analyze the response of the circuitry of the 

chip to the test patterns; the methodologies vary only in how the test pattern generators 
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and response analyzers are implemented. We now describe several pseudorandom 

BIST methodologies of special interest; more complete treatments can be found in 

[AbBF90] and [BaMS87]. 

2.6.1     Conventional BIST 

The conventional BIST methodology uses linear feedback shift registers, also called 

test pattern generation registers (TPGRs), to provide the test patterns. Figure 2-3 

shows a typical test pattern generation register. The register itself is a deterministic 

Figure 2-3. A test pattern generation register (TPGR). 

system; however, as it is clocked, its states over time satisfy some of the same proper- 

ties as uniformly distributed random numbers, and so the TPGR is said to provide 

pseudorandom patterns. Conventional BIST also makes use of multiple input shift reg- 

isters (MISRs) as shown in Figure 2-4. Rather than checking the response of the cir- 

cuit to each test pattern individually, conventional BIST uses an MISR to compress the 

responses over time into a single signature that can be checked at the end of the test 

session, after all test patterns have been applied. Since the compression of circuit 
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Figure 2-4. A multiple input shift register (MISR). 

responses into a signature involves some loss of information, getting the expected 

fault-free signature is not a guarantee that no fault exists in the circuit; it is possible for 

a fault effect to be masked. The probability that a fault effect is masked is referred to as 

the aliasing probability. 

When BIST is added to a circuit, the circuit is usually partitioned into manageable 

pieces called kernels, and BIST registers are placed at the inputs and outputs of each 

kernel. For example, in a register transfer level (RTL) datapath, the main focus may be 

on testing the arithmetic logic units (ALUs), and so each ALU may be in a kernel by 

itself, with TPGRs at the inputs to the ALU, and an MISR at the output of the ALU. If 

some signal is at the input of one kernel Kj and the output of another kernel K2, a third 

type of test register, the built-in logic block observation (BILBO) register, may be used 

[KoMZ79]. This is a "double duty" register that can act as either a test pattern genera- 

tion register or a multiple input shift register, depending on its mode of operation at a 

given time. Since the BILBO can not generate test patterns and compress circuit 

responses simultaneously, kernels Kj and K2 must be tested in separate test sessions. 

This is shown in Figure 2-5; during the test session for Kj, the BILBO acts as an 



19 

MISR, compacting the responses of kernel Kb and during the test session for K2, the 

BILBO acts as an TPGR, providing test patterns for kernel K2. 

TPGR j 

K, 

JL 
BILBO 

K, 

MISR 

in test session I 
/ 

TPGR 

K, 

i. 
MISR TPGR 

• £> 

i. 
MISR 

in test session 2 

(a) structure of circuit. (b) operation of BILBO during the test. 
Figure 2-5. The use of a BILBO to test two adjacent kernels. 

Once a circuit has been partitioned appropriately into kernels, and test registers have 

been added, test scheduling must be done; this step looks at the requirements on the 

BILBOs of the circuit, and determines which kernels may be tested in parallel without 

conflict. Based on this, the kernels are divided up into test sessions. A single test ses- 

sion sets the BILBOs of the circuit to specific operational modes, and then uses those 

modes to test the kernels assigned to it. Note that, in general, conventional BIST 

requires a complex test controller; the test controller must be able to move from test 

session to test session at the appropriate times by sending the proper operational mode 

controls to the BILBOs. 
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To avoid the complicated problem of test scheduling, another kind of test register, the 

concurrent built-in logic block observation register (cBILBO), can be used [WaMc86]. 

The cBILBO register is like a BILBO, except that it can generate test patterns and 

compact test responses simultaneously; thus, it eliminates the need to test kernels sep- 

arately. Despite this advantage, the cBILBO is seldom used because of its large area; it 

is essentially as large as a TPGR and an MISR combined. 

2.6.2 MISR-based BIST 

MISR-based BIST attempts both to reduce the area overhead required for conven- 

tional BIST and to eliminate the need to test kernels separately. The basic scheme is 

shown in Figure 2-6 for two kernels. A single test session is used to test both Kj and 

K2; during that test session, the MISR between the kernels compacts the responses of 

KL, and the partial signatures created in the MISR are used as test patterns for K2. The 

main disadvantage of MISR-based BIST is that the partial signatures of Ki may not be 

good quality test patterns for K2. 

2.6.3 Circular BIST and circular self-test path 

Circular built-in self-test and the circular self-test path technique have recently been 

proposed as lower cost alternatives to conventional BIST [KrPi87] [PiKK92] [Stro88] 

[POLB88]. Both methodologies make use of a special test register, shown in Figure 

2-7, that can simultaneously both generate test patterns and compact responses. There 

is no feedback within the circular BIST test registers themselves; instead, the feedback 
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Figure 2-6. An MISR-based BIST scheme for two kernels. 
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Figure 2-7. A circular BIST test register. 

necessary to pseudorandom BIST is created in the way that the test registers are linked 

together. In the circular self-test path technique, the feedback is formed by linking the 

test registers together to form one long circular self-test path. Figure 2-8 shows an 

example RTL structure with a circular self-test path added. The circular self-test path 

is shown with a broken line; for this example, only the primary input and primary out- 

put registers are included in the path, although in general any of the registers may be 

included. For this methodology, the signature is obtained either by watching the 

stream of bits flowing through a specified point on the path for a specified number of 

clocks before the end of the test session [Stro88] [PiKK92], or by looking at what 



22 

-j REG! |<- -j REG2 |<- -j REG3 [< • 

* * 

REG4 REG5 

1L £ 
+ 
i_ 

REG6 

I  ->| REG? j  

Figure 2-8. An example RTL structure with a circular self-test path. 

remains in the test registers at the end of the test session. Note that there is no need to 

scan out signatures of internal blocks, since all signatures will pass through a primary 

output register. 

For the circular BIST methodology, the test registers are linked together into a long 

chain; however, the two ends of the chain are not linked to make a circle as in the cir- 

cular self-test path technique. Instead, the input end of the chain is driven by a TPGR, 

and the output end of the chain drives an MISR. Figure 2-9 shows the same circuit as 

Figure 2-8, using the circular BIST methodology instead of a circular self-test path. 

For this methodology, the signature is obtained from the MISR at the end of the test 

session. 

Both the circular self-test path and circular BIST methodologies offer several advan- 

tages over conventional BIST, particularly in regards to hardware overhead. Test con- 

trol is much simpler for these methodologies than for conventional BIST. First, a 
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circular BIST register has fewer modes of operation than a BILBO register, so the test 

controller generates fewer control bits. Secondly, the entire circuit can be tested in one 

session, so the test controller is not responsible for managing flow of control from one 

test session to the next, and there is no complicated test scheduling problem to solve. 

The main disadvantages of the circular methodologies in comparison to conventional 

BIST are questions about the quality of the test patterns, which may no longer be truly 

pseudorandom, and questions about the probability of error masking or aliasing during 

test response compaction; however, empirical study has shown the circular self-test 

path technique to be effective at both generating test patterns and compacting 

responses [PiKK92]. 
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2.7    Fitting DFT into the Design Flow 

Figure 2-10 shows a typical ASIC design flow from concept to silicon, with the vari- 

ous levels of design abstraction at which the design is described along the way, and the 

tools that move the design from one level of design abstraction to another. Consider- 

concept 

Algorithmic Level Description 
(Behavior) 

High Level Synthesis 

Register Transfer Level Description 
(Datapath + Controller) 

Logic Level Synthesis 

f 
Gate Level Description 

I 
Technology Mapping, 
Placement and Routing 

silicon 

Figure 2-10. The ASIC design flow. 
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ation of testability can begin at any time in the course of the design flow; however, 

there are many advantages to considering testability early in the design flow. The most 

important advantage is that the earlier we consider testability, the more flexibility we 

have in the design. Design decisions have a profound effect on the testability of a fin- 

ished circuit; if we wait until a design's physical implementation is nearly complete to 

start thinking about how to test it, we may have already made design choices that are 

catastrophic from the point of view of testability. Furthermore, the higher the level of 

design abstraction, the fewer the number of components that must be considered when 

analyzing the circuit structure. For example, a circuit with thousands of gates may 

have only a small number of register transfer level components; this smaller number of 

components make the analysis problem much more computationally tractable. Addi- 

tionally, at higher levels of abstraction we may have more information about the cir- 

cuit; for example, at the algorithmic level we know the function performed by the 

circuit. This can guide us greatly in designing a test, making the job easier than if all 

we have is a netlist of gates with no real notion of behavior or how the circuit is meant 

to be used. 

2.8     Testability Metrics 

In testing a circuit, the bottom line is fault coverage; a circuit is easily testable if a test 

can be devised that detects a high percentage of the potential faults in the circuit in a 

reasonable amount of time. However, since fault simulation is expensive, and not 
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available at levels of design abstraction above the gate level unless synthesis is per- 

formed first, it is not feasible to use fault simulation to guide design-for-testability. 

Instead, testability metrics are used to capture the essential aspects of a high quality 

test indirectly. The two key components of a high quality test are the ability to control 

an internal signal in the circuit to some value that is necessary to sensitize a fault, and 

the ability to observe an internal signal to see whether some fault effect has caused an 

error in that signal. Testability metrics can be divided into two categories: those that 

measure controllability, and those that measure observability. 

Each signal embedded within a circuit can be thought of as generating test patterns for 

the part of the circuit driven by the signal. Controllability measures whether those test 

patterns (for that part of the circuit) are of good quality. What metric should be used 

for controllability depends largely on the test scheme used. For automatic test pattern 

generation (ATPG)-based test, the issue is one of being able to control the signal in 

question to a value necessary to sensitize a fault; therefore, a suitable metric should 

measure how difficult it is to set the signal to the necessary value. We will see several 

ATPG-based testability metrics in Chapter Three, when we survey related research in 

design-for-testability. For built-in self-test (BIST)-based test, the issue of controllabil- 

ity is slightly different. We will describe the BIST controllability metrics that we use 

in this work in Chapter Four. 

Observability of a signal measures the degree to which we can tell what is happening 

at that signal, given that we cannot look at the signal directly, but instead can look only 
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at the primary outputs of the circuit. In ATPG-based work, metrics for observability 

may measure the difficulty in sensitizing a path for the fault effect from the signal to a 

primary output. We will present our own observability metric, suitable for BIST, in 

Chapter Four. 

2.9    Summary 

This chapter has filled in background information necessary to this research. A typical 

ASIC design flow was presented in order to clarify the levels of abstraction at which a 

VLSI design can be described. This concept is central to our work, which develops 

BIST insertion methodologies applicable at various design levels throughout the ASIC 

design flow. The two main approaches to test, deterministic and pseudorandom, were 

presented so that the related research of Chapter Three, which uses both approaches, 

can be better appreciated. A number of BIST schemes were presented preliminary to 

their use in later chapters. Finally, the concept of testability metrics, which is central to 

much of the related research in Chapter Three and is used throughout our own work, is 

described. 



chapter 3 Survey of Related Research 

This chapter discusses previous work in design-for-testability, which encompasses 

techniques to design digital circuits such that they are easy to test once synthesized. 

We discuss approaches based on both automatic test pattern generation (ATPG) and 

built-in self-test (BIST), because although the two schemes are different, they share 

many of the same objectives. We categorize the approaches according to the level of 

design abstraction to which each approach is applied. We further divide the 

approaches into testability insertion approaches and synthesis-for-testability 

approaches. 

Testability insertion approaches take a design at a given level of abstraction and mod- 

ify it, resulting in a more testable design at the same level of abstraction. In contrast, 

synthesis-for-testability approaches modify the synthesis process itself, so that the cre- 

ated circuits are more testable. For example, it has been shown that it is difficult to 

generate deterministic tests for sequential circuits with feedback loops and large 

sequential depth. Thus, many ATPG-based design-for-testability approaches focus on 

the elimination of feedback and the minimization of sequential depth. For testability 

28 
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insertion approaches, elimination of feedback may entail the addition of test circuitry 

that breaks any existing feedback during the test; for synthesis-for-testability 

approaches, the synthesis tool may be modified so that it will not create large feedback 

loops. 

Design-for- testability approaches have another natural division based on the method 

used. Structure-based techniques place explicit restrictions on the structure of the cir- 

cuit in an attempt to improve testability; for example, they may specify that a circuit 

contain no large feedback loops. Metrics-based techniques use testability metrics that 

implicitly capture information about testability problems like feedback loops and large 

sequential depths. Metrics-based testability insertion techniques are typically iterative 

in nature. First, testability metrics are computed for points throughout a circuit. Next, 

one point is selected for testability improvement, based on the metrics values, and 

some modification is made to the circuit to improve the testability at that point. The 

metrics for the circuit are recomputed, and the process is iterated until all points of the 

circuit have acceptable testability properties. 
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♦ Princeton: [BhJh93] ♦ AT&TERC: [POLB88] 
logic level 
testability 
insertion ♦ Iowa: [PoRe93] ♦ Karlsruhe: 

♦ this work: 

[LiZB93] 

[StWu94] 

Chapter Seven 

♦ IMEC: [SCDM93] ♦ USC: [LiNB93] 

♦ Linkoping: [KuPe89] ♦ UCSD: [OrHa93]          j 
register 
transfer level 
testability ♦ Illinois: 

[GuKP94] 

[ChWS91a] ♦ this work: [CaPa95] 
insertion [ChWS91b] 

[ChSa93] 
[ChLP92] 

Chapter Eight 

♦ Rutgers: [ChKA92] 
state table 
testability 
insertion 

♦ Iowa: 

[KaCA93] 
[KaCA95] 

[PoRe93] 

♦ Princeton: [LWJA92] 
[LeJW93a] 
[LeJW93b] 

♦ CWRU: [PaCH91] 
[ChPa91] 
[HaPa93] 

high level 
synthesis-for- ♦ Montreal: 

[BhJh94] 

[JaKa93] ♦ UCSD: [HaOr94a] 

tes tab ility ♦ Wisconsin: 

♦ Linkoping: 

♦ Cantabria: 

[MuJS94a] 
[MuJS94b] 

[Peng95] 

[FeSV94] 

[HaOr94b] 

[VaOr95] 

♦ NEC USA: [DePo94] ♦ this work: [PaCa95] 
algorithmic 
level 
testability 

♦ Illinois: [ChKS94] 
Chapter Nine 

♦ UT Austin: [ViAA92] 
insertion [VTAA93] 

[ThVA94] 

Table 3-1. Related research in design-for-testability. 
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3.1     Logic Level Testability Insertion 

We now summarize several projects for testability insertion in logic level circuits. 

3.1.1     Princeton University 

Bhatia and Jha [BhJh93] decide where to place scan elements for ATPG-based circuits 

by using controllability and observability metrics that implicitly capture the presence 

of feedback loops and the sequential depth. This work defines controllability and 

observability metrics for each latch, primary input, and primary output in the circuit. 

Primary inputs and scan chain elements have high controllability; for a non-scan latch 

L, controllability is defined to be the average of the controllabilities of all latches and 

primary inputs driving the latch L through combinational logic, minus a factor to take 

into account the increased difficulty in controlling L due to its being a larger sequential 

depth from the primary inputs. Primary outputs and scan chain elements have high 

observability; for a non-scan latch L, observability is defined as the average of the 

observabilities of all latches and primary outputs that latch L drives though combina- 

tional logic, minus a sequential depth factor. An iterative approach chooses latches one 

at a time for inclusion in the scan chain, using the sum of controllability and observ- 

ability as an overall testability metric. 
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3.1.2 University of Iowa 

Work in [PoRe93] takes a significantly different view of logic level design-for-test- 

ability. This work views a logic level circuit as a state machine, and concentrates on 

modifying that state machine to make the state table strongly connected. A state table 

is strongly connected if it is possible to traverse from any state to any other state. The 

state table is modified by adding state transitions to it; this is done by placing some of 

the state elements in a partial scan chain. The authors describe how strong connectivity 

is essential in detection of a certain class of faults. 

3.1.3 AT&T Engineering Research Center 

The work of [POLB88] focuses on circular BIST insertion, using a number of testabil- 

ity metrics to make decisions about which flip-flops should be included in the circular 

BIST chain. For each flip-flop, four different testability metrics are computed. The 

first two are based closely on the structure of the cone of combinational logic driving 

the flip-flop; the first counts how many flip-flops drive that cone of logic, and the sec- 

ond measures the degree of reconvergent fanout within the cone. The third and fourth 

metrics measure the degree of difficulty in controlling and observing the flip-flop, and 

are patterned after the SCOAP metrics of [Gold79]. An iterative approach chooses 

flip-flops one at a time for inclusion in the circular BIST chain, using a weighted aver- 

age of the four metrics as an overall testability metric. 
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Work by another group at the AT&T Engineering Research Center looks at a combina- 

tion of partial scan and BIST [LiZB93]. Some of the flip-flops are selected for inclu- 

sion in a scan chain; the selection is structure-based, and concentrates on breaking all 

cycles and some self-loops. Rather than deriving deterministic test patterns to shift 

into the scan chain, as is usual for partial scan, the method drives the scan chain with 

pseudorandom patterns from a TPGR. The output of the scan chain is observed 

through an MISR. Additional points may be selected for BIST-type test point insertion 

based on probabilistic controllability and observability metrics. If some signal has low 

controllability, circuitry is added to bring a new pseudorandom bit to that point during 

test. If some signal has low observability, an additional primary output is added at that 

point. 

3.1.4     Universities of Karlsruhe and Siegen 

Work described in [StWu94] describes a method for BIST insertion that spans the 

logic and register transfer levels. The method begins by deciding which flip-flops in a 

logic level circuit need to be test flip-flops; for each test flip-flop, a mode vector is 

formed showing whether the test flip-flop is used to generate test patterns or collect 

test responses during each of the test sessions. The method then groups the test flip- 

flops together to form test registers, using the mode vectors to group test flip-flops that 

perform the same function at the same time together into a single test register. In this 
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way, BIST insertion can be done with less overhead than is necessary for a register 

transfer level approach that makes decisions in terms of whole registers. This method 

is most applicable to control-dominated structures that contain many self-loops. 

3.2     Register Transfer Level Testability Insertion 

At the register transfer level, testability insertion decisions are made in terms of whole 

registers rather than individual flip-flops or latches. The major advantage in doing 

insertion at the register transfer level is a reduction in computational complexity; since 

the elements in an RTL circuit analysis are arithmetic logic units, registers, and multi- 

plexers rather than flip-flops or latches and gates, there is an order of magnitude fewer 

elements to consider at the RTL than at the gate level. 

3.2.1     IMEC (Belgium) 

The technique of [SCDM93] uses partial scan to break all the feedback loops in a reg- 

ister transfer level circuit. Based on structural analysis of the circuit, the technique 

uses a depth-first search to enumerate all feedback loops and their possible cuts, and 

then uses a branch-and-bound algorithm with some pruning to find an optimal solution 

in terms of the minimal number of latches that must be included in the scan chain in 

order to break all the loops. The approach does not rely solely on turning existing 

latches into scan latches to break feedback; it also allows the addition of new scan 

latches that are transparent in normal mode. 
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3.2.2     Linkoping University 

Like the work in [SCDM93], the work described in [KuPe89] and [GuKP94] uses par- 

tial scan to break the feedback loops in register transfer level circuits; however, it uses 

testability metrics to decide which of the registers involved in the feedback should be 

made scan registers, and where to place T-cells, which are essentially scan elements 

that are transparent in normal mode. The work defines testability as a function of four 

metrics: combinational controllability, combinational observability, sequential control- 

lability, and sequential observability. Primary inputs have high combinational control- 

lability, and the output of an arithmetic logic unit (ALU) has a combinational 

controllability that is the average of the controllabilities of the inputs to the ALU, 

times a factor that represents the decrease in controllability due to the functionality of 

the ALU. Primary outputs have high combinational observability. The input of an 

ALU has combinational observability that is the product of three factors: the average 

of the observabilities of the outputs of the ALU; a factor that represents the decrease in 

observability due to the functionality of the ALU; and the average of the controllabili- 

ties of the other inputs to the ALU.   The sequential metrics represent the number of 

clock cycles necessary to control or observe an element. Overall testability is defined 

as a function of the four metrics, and an iterative approach is used for the actual inser- 

tion. First, the feedback loops are broken by selecting one register with poor testability 

in each loop for insertion. Then, metrics are recomputed, and any other registers with 

poor testability are fixed, one by one, re-computing the metrics after each insertion. 
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Finally, T-cell insertion is used to improve the metrics of any lines with poor testabil- 

ity. 

3.2.3     University of Illinois 

Work presented in [ChWS91a], [ChWS91b], and [ChSa93] selects registers in register 

transfer level circuits for partial scan, with the goal of easing automatic test pattern 

generation. It guides the selection based on a testability analysis of a data flow graph 

representing the circuit's behavior; based on this behavioral analysis, which looks for 

justification and propagation paths, registers are classified in terms of whether or not 

they are completely controllable and observable. When a node is not completely con- 

trollable, meaning that there is some value that can not be justified at that node, partial 

scan insertion is done to fix the deficiency. 

Another project at the University of Illinois also does partial scan insertion in register 

transfer level circuits [ChLP92] based on behavioral analysis; however, this work uses 

a different set of testability metrics. Here, controllability of a node is measured by esti- 

mating the minimum and maximum number of instruction cycles required to set that 

node to a given value. Observability is measured similarly, with estimates of the mini- 

mum and maximum number of instruction cycles needed to observe a given value at 

the node. The first step of insertion is to choose scan registers to break all reconvergent 

fanout; this is done because the computation method for the metrics does not properly 

handle reconvergent fanout. Next, an iterative procedure is used to select additional 
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scan registers, based on the testability metrics and the cost associated with a given 

selection. 

3.2.4     University of Southern California 

Work in [LiNB93] describes a method for using BIST to test each arithmetic logic unit 

(ALU) in a register transfer level circuit without resorting to the kind of full BIST 

implementation traditionally used, with test registers directly at the inputs and outputs 

of each ALU. Instead, an analysis looks at possible embedded test environments for 

each ALU. These embedded test environments are based on the identification of I- 

paths within the circuit1; these are paths that can be used to bring a test pattern from a 

TPGR or BILBO in some other part of the circuit to the input of the ALU in question, 

or to bring a test response from the output of the ALU in question to an MISR or 

BILBO in some other part of the circuit. In general, there are many possible ways to 

add BIST registers to a circuit so that a suitable test environment exists for each ALU. 

A branch-and-bound technique is employed to prune the space of possible designs, 

based on area overhead and test application time for overall designs, which is deter- 

mined by doing test scheduling and includes an estimate of the test length required for 

individual ALUs. 

l. The "I" in "I-path" stands for "identity", and refers to the fact that a signal does not 
change in value as it is propagated along the path. 
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3.2.5     University of California at San Diego 

Work in [OrHa93] describes a method for BIST insertion in register transfer level 

datapaths. The BIST insertion is guided by metrics designed to minimize the test 

application time for the resulting circuit. These metrics take into account all possible 

test paths that can be used for testing a module. The metrics also measure the length of 

a test session for a module when a given test path is used; this length is based on the 

randomness and transparency properties of the signals at the inputs and outputs of the 

module as defined in [ChPa91]. 

3.3     State Table Testability Insertion 

This group of research takes a different view of register transfer level design-for-test- 

ability; rather than working on datapaths, which are interconnections of ALUs, multi- 

plexers, and registers, these projects view the circuit as a state table or finite state 

machine. This is a common way to view the controller part of a datapath / controller 

pair, and general circuits can be viewed in this way as well. The projects described 

here make modifications in the state table description of the circuit, so that when the 

circuit is synthesized to the logic level it can be easily tested. 

3.3.1     Rutgers University et. al. 

Collaborative research done at Rutgers University, NEC USA's C&C Research Labo- 

ratories and AT&T Bell Laboratories alters the state table description of a circuit, 
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embedding a test machine within the design machine [ChKA92] [KaCA93] 

[KaCA95]. The idea is to add transitions to the state table that are taken only when the 

state machine is in test mode. The resulting state machine, when synthesized, has two 

modes of operation, the original design mode and a test mode. These transitions added 

to the machine to define the test mode are chosen specifically to make testing easier. 

Transitions in the test machine ensure that for any state of the circuit, there is a short 

predetermined sequence of inputs that can be used to set the circuit to that state, and a 

short predetermined sequence of inputs that can be used to propagate the state to the 

primary outputs. 

3.3.2     University of Iowa 

In an extension of logic level design-for-testability work described earlier in this chap- 

ter, work in [PoRe93] modifies the state table description of a circuit by adding state 

transitions. This technique focuses on making the state table strongly connected, for 

reasons already described. In the logic level work, new state transitions were effected 

using partial scan. At this level, the circuit has not yet been synthesized, so it is possi- 

ble to simply add the new state transitions directly to the state table. 
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3.4     High Level Synthesis-far-Testability 

High level synthesis-for-testability strives to modify the high level synthesis process 

so that the resulting synthesized circuits are easily testable. [AvMc94] presents an 

excellent overview of university research efforts in this area. 

3.4.1 Case Western Reserve University 

[PaCH91] and [HaPa93] describe the use of testability constraints to guide high level 

synthesis for BIST-based circuits. Their allocation scheme restricts the structure of the 

synthesized circuit, preventing the formation of certain self-loops that can degrade the 

quality of BIST tests. In [ChPa91], testability metrics are used to guide the high level 

synthesis process; these metrics are used to decide when controllable and observable 

points may be removed, and therefore the metrics allow the system to trade-off hard- 

ware overhead with test quality and test application time. 

3.4.2 Princeton University 

[LWJA92], [LeJW93a] and [LeJW93b] describe work done at Princeton University in 

high level synthesis of circuits that are easily testable using ATPG. Their structure- 

based method for register allocation avoids the creation of sequential loops during reg- 

ister binding; when loops can not be completely avoided, the method relies on partial 
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scan to break any remaining feedback during test. The register allocation also reduces 

sequential depth and improves the controllability and observability of the registers by 

binding at least one primary input or output value to each register when possible. 

Another ATPG-based project at Princeton, described in [BhJh94], also concentrates on 

modification of the algorithm that does allocation during high level synthesis. Here, 

though, the modification concentrates on maintaining test environments for each of the 

modules in the circuit. A test environment for a module is a set of justification and 

propagation paths that ensure that the proper test patterns can be justified at the inputs 

of the module, and that the outputs of the module can be propagated to the primary 

outputs. By ensuring that each module has a test environment during each iteration of 

the allocation process, the method ensures that the final synthesized circuit will be 

testable using ATPG. 

3.4.3     Ecole Polytechnique de Montreal 

[JaKa93] describes metrics for register transfer level testability analysis. The metrics 

are designed to be used to guide high level synthesis through incorporation with the 

cost function used by most high level synthesis systems to choose between competing 

designs. The metrics, which are based on previous gate level work, measure the diffi- 

culty of setting a signal to a specified value, and of propagating a signal error to a pri- 

mary output. A heuristic for computing the metrics is based on reduced ordered binary 

decision diagrams. 
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3.4.4 University of Wisconsin 

Work done at the University of Wisconsin [MuJS94a] [MuJS94b] modifies the bind- 

ing algorithm in an attempt to synthesize a circuit that is more testable using ATPG. 

Their algorithm, which maps the binding problem onto a minimum-cost network flow 

problem, tries to avoid bindings that create self-loops and cycles, and that create regis- 

ters that are not easily controllable and observable. It does this by associating high 

costs with these undesirable bindings. 

3.4.5 Linkoping University 

[Peng95] proposes the use of controllability and observability metrics to guide high 

level synthesis of ATPG-based circuits. The method works by modifying the alloca- 

tion process to take testability into account. An effort is made to merge nodes with 

good controllability and bad observability to nodes with good observability and bad 

controllability; the premise is the merged node will retain the good controllability of 

the first node and the good observability of the second node. 

3.4.6 University of Cantabria 

[FeSV94] describes a high level synthesis system for ATPG-based circuits. The sys- 

tem is guided by testability metrics found using sampling while random input vectors 

are applied to the input algorithmic description. For a single bit, controllability is mea- 

sured in terms of the probability of forcing the bit to a particular value, and observabil- 

ity is measured in terms of the probability of seeing a change in the bit at a primary 
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output. The controllability and observability of a signal is defined to be the minimum 

of the controllabilities and observabilities of the individual bits that make up the sig- 

nal. An additional sequential depth factor is used to account for difficulty in control- 

ling and observing signals that are far from the primary inputs and outputs. Another 

metric, the loop-based test cost, is used to quantify the ill effect that the presence of 

loops can have on the number of scan registers that will be needed to break loops, and 

the high test pattern generation cost and low fault coverage typical of circuits with 

loops. 

3.4.7     University of California at San Diego 

Work in [HaOr94a], [HaOr94b] and [VaOr95] develops a high level synthesis method 

based on testability metrics that are designed to be helpful in minimizing the test appli- 

cation time required for BIST. The metrics are based on the probabilities that two 

given modules will be bound together by the synthesis. Conflict and coverage metrics 

are indirectly related to the number of test sessions that will be required for the final 

synthesized circuit; conflict measures the degree of conflict for hardware resources 

that will occur when an attempt to test the circuit in one test session is made, and cov- 

erage measures the accessibility of individual modules. A correlation metric measures 

degradation in test pattern quality due to reconvergent fanout both inherent to the data 

flow and caused by the binding. The authors show how the metrics can be updated 

during synthesis, with the initial probabilistic analysis becoming more and more deter- 

ministic as binding decisions are made. 
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3.5    Algorithmic Level Testability Insertion 

The following group of testability insertion approaches work by modifying the algo- 

rithmic level design description prior to high level synthesis. 

3.5.1 University of Illinois 

Work in [ChKS94] extends previous ATPG-based work at the register transfer level 

upwards to the algorithmic level. The same behavioral testability metrics used in 

[ChWS91a], [ChWS91b], and [ChSa93] to select registers for partial scan are used 

here as a basis for modifying a data flow graph through the insertion of test statements. 

The test statements, executed when the circuit is placed in test mode, make it easier to 

find the justification and propagation paths necessary for ATPG. 

3.5.2 NEC USA C&C Research Laboratories 

Work in [DePo94] proposes modifying the behavioral specification of a design, in the 

form of a control-data flow graph, prior to high level synthesis so that the synthesized 

circuit can be easily tested using ATPG with a minimum amount of hardware over- 

head. Deflection operations, which serve to move operations of the data flow graph 

without changing the overall functionality of the design, are added with an eye 

towards reducing the number of scan flip-flops that will eventually be needed to break 

all loops in the synthesized datapath. Their behavioral transformation approach is spe- 

cifically designed to be used with their own high level synthesis system, BETS. 
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3.5.3     University of Texas at Austin 

Work in [ViAA92], [VTAA93] and [ThVA94] modifies an algorithmic level behav- 

ioral description prior to high level synthesis in an attempt to create a circuit that will 

be easily testable when synthesized; their method is demonstrated using an ATPG- 

based test. Their method looks for parts of the input behavior that are incompletely 

specified; for example, it looks for control modes that are unused. The method then 

takes advantage of the unspecified parts of the behavior by adding functionality that is 

conducive for testability; for example, an unused control mode might be used to access 

a part of the circuit that is ordinarily difficult to access. 

3.6    Summary 

This chapter has presented a survey of related work recently done in testability inser- 

tion and synthesis-for-testability. Our own testability insertion methodologies, 

described in Chapters Seven, Eight, and Nine for the logic level, register transfer level, 

and algorithmic level, respectively, are meant to add to this existing work by looking 

at the same problems with a different emphasis. 



chapter 4 BIST Testability Metrics 

In Chapter Three, we saw a wide variety of testability metrics used in related research 

for both automatic test pattern generation- (ATPG-) based and built-in self-test- 

(BIST-) based design-for-testability. In this chapter, we present a more detailed look at 

the testability metrics used in our work. As is the case with most testability metrics, 

our metrics are divided into two categories: those designed to measure controllability, 

and those designed to measure observability. 

4.1     Metrics for Controllability 

The basic premise behind built-in self-test is that it is possible to design circuits such 

that they can be easily tested using pseudorandom test patterns. Therefore, a natural 

choice for measuring the controllability of a signal is a metric that quantifies the ran- 

domness of the signal. Entropy, a standard notion from information theory [Papo84], 

quantifies the uncertainty about the outcome of an event, and is based on the probabil- 

ity distribution for the underlying state space. For example, suppose that a signal X is 

46 
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one bit wide. Let px denote the 1-probability of signal X, i.e., let px denote the proba- 

bility that signal X takes bit value ' 1'. Signal X takes bit value '0' with probability 

1 - px . If px = 1, we know that signal X always takes on bit value ' 1'; similarly, if 

px = 0, we know that signal X always takes on bit value '0'. In both of these cases, 

we are certain about the outcome, and the entropy of the signal is zero. If px = 0.9, we 

are quite certain that the signal will take on bit value ' 1', so the entropy, while not 

zero, is still quite low. We are least certain about the outcome when px = 0.5; in this 

case, the entropy is one, the maximum value for a one-bit signal. For one-bit signals, 

the full formula for entropy is: 

h = Pxl°Zp-x 
+ (l -Px* l°glJ~p~j ' (EQ 4"1) 

For signals greater than one bit wide, the principle of entropy is similar. For any signal 

X, let IXl denote the width of the signal in bits. The current state of the signal is the 

value taken by the signal, and so at a given time signal X may be in any one of the fol- 

\x\ 
lowing states: 0, 1, 2, ..., 2    - 1. Let X's state probability distribution be denoted by 

a row vector px, where 

Px 

Px,0 

PXA 

PX2 

X, 21X1-1 

Pr {signal X is in state 0} 
Pr { signal X is in state 1} 
Pr {signal X is in state 2} 

Pr {signal X is in state 21*! - 1} 

(EQ 4-2) 
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Here, Pr{E} denotes the probability of the event E. The entropy of the signal X is 

defined as: 

2« - 1 

lX =     S   Px, il0%J~ ■ <EQ 4'3) 

i = 0 * '" 

Here, entropy ranges from zero, when one event occurs with probability one and the 

rest occur with probability zero, to LX1, when all events are equally likely to occur. 

Following the work of [ThAb89] and [ChPa91], we normalize entropy for use as a 

controllability metric. We define the randomness of a signal X as: 

*,n,-.„ actual output entropy *x 
MR(X)   =    : Z-— ^—   =  prr. (EQ4-4) v maxunum output entropy      |X| 

As a result, randomness ranges from zero to one regardless of the bit width. The ran- 

domness metric can be thought of as a comparison of a signal's effectiveness at gener- 

ating test patterns with the effectiveness of a "perfect" test pattern generator that 

generates uniformly distributed random patterns and therefore has the maximum pos- 

sible entropy. If a signal has randomness zero, the signal generates a single test pattern 

over and over again; if a signal has randomness one, it generates all possible test pat- 

terns with approximately equal frequency. 

Another controllability metric that has been used extensively by other researchers for 

built-in self-test is that of expected state coverage [KrPi87] [PiKK92]. Expected state 

coverage for a signal X is the fraction of all 2m possible states for that signal that are 
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expected to be generated or covered during a testing session of a given length. The 

expected state coverage for signal X in N clocks can be written in terms of X's state 

probability distribution as: 

2W-t 

ESC(X,A0=-^X      [l-(l-pXi)
N], (EQ4-5) 

2'     i = 0 

as first derived in [DeVH86]. Expected state coverage gives a different perspective 

from randomness on a signal's effectiveness in generating test patterns. While ran- 

domness compares the signal to a perfect test pattern source over the long run, 

expected state coverage tells us how close the signal comes to generating an exhaus- 

tive test during a test session of fixed length. Research by Majumdar and Sastry 

[SaMa91a] has explored the relationship between state coverage and a more direct 

measure of test quality, the fault coverage obtained for a combinational logic block. 

Both randomness and expected state coverage of a signal are based on the state proba- 

bility distribution of that signal. We now use the circuit of Figure 4-1 to make a point 

about the calculation of the probability distributions.1 We restrict ourselves tempo- 

rarily to trees to simplify the explanation. The controllability of a signal depends only 

on the circuit that is driving it; this is the part of the circuit between the primary inputs 

and the signal. This means that if we are considering the controllability of signal Zin 

Figure 4-1, we need only consider subcircuits A and B, and the operation immediately 

l. The symbol ® denotes a generic operation or arithmetic logic unit. 
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driving Z. We may remove subcircuit C entirely, because it has no effect on the con- 

trollability of Z. 

PRIMARY INPUTS 

U-i    U-* 
/ 

Subcircuit A 

PRIMARY OUTPUT 

Figure 4-1. Circuit used to illustrate controllability and observability concepts. 

Actually, for simple trees, we can write the state probability distribution of signal Z. 

pz, directly in terms of the state probability distributions of signals X and Y, px and 

pY, and the operation ® used to combine X and Y to make Z. For example, suppose 

that the operation is a modulo-16 adder, so that Z = X + Y, and that all of the signals are 

four bits wide. We can find the probability that signal has value fifteen in terms of all 

the (X, Y) pairs that sum to fifteen. We have: 
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PZ 15   = ^ {S1gnal Z has value 15} 
= Pr {signal X has value 15 and signal Y has value 0} 

+ Pr { signal X has value 14 and signal Y has value 1} 
+ Pr { signal X has value 13 and signal Y has value 2} 

+ ... 
+ Pr { signal X has value 0 and signal Y has value 15 } . 

For our tree, signals X and Y are independent, so we can write this as: 

PZ, 15   = PX, 15   PY,0+PX, 14 'Py, l+PX, 13 ' PY,2+ "' +PX,0 ' PY, 15 " 

Other elements of pz are calculated in a similar way. 

It's easy to see how to compute the state probability distributions for an overall tree of 

operations, using the idea that we can compute a signal Zs state probability distribu- 

tion in terms of the state probability distributions of the two signals X and Fthat imme- 

diately drive Z. We start at the primary inputs, which have known state probability 

distributions; for example, if a primary input signal S is driven with uniformly distrib- 

uted random patterns, it has a state probability distribution 

PS = 
J_    _L       _L 
2\s\   2is| - 2\s\ 

To compute the state probability distributions of the signals internal to the tree, we 

work down the levels of the tree one by one until we reach the primary output. 

For general circuits, the state probability distribution computation becomes more com- 

plicated. In Chapter Five, we will see a Markov model for this computation that takes 
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reconvergent fanout, direct feedback loops, and indirect feedback loops into account. 

It also handles the presence of BIST registers. However, even in this general case, the 

state probability distribution of a signal depends only on the circuitry driving the sig- 

nal. 

4.2    A Metric for Observability 

For our BIST-based work, we measure the observability of a signal with a new metric 

that we cal transparency. Transparency measures the probability that an arbitrary 

change in the signal's value can be observed at the primary output. Transparency 

ranges from a value of 0 for signals that can not be observed even indirectly, to a value 

of 1 for signals that can be directly observed. 

Transparency is inherently more complicated a concept than randomness. To see why, 

consider what controllability and observability mean in the circuit of Figure 4-1. 

Again, we begin by restricting ourselves to trees of operations. As previously men- 

tioned, controllability depends only on the circuitry driving a signal; thus, when we 

consider the controllability of signal Z, we need only consider subcircuits A and B, 

and the functionality of the operation directly driving signal Z. If observability were a 

true complement to controllability, the observability of a signal would depend only on 

that part of the circuit that the signal is driving, i.e., on that part of the circuit between 

the signal and the primary output. In Figure 4-1, if we were considering the observ- 
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ability of signal X, we would have to consider only subcircuit C and the operation that 

X is immediately driving; we could throw subcircuits A and B away. However, this can 

not give us a true picture of observability. In actuality, the observability of signal X 

depends heavily on subcircuits A and B. For example, suppose that the operation that 

X is driving is a multiplication. The controllability of the other input to the multiplier, 

labelled Fon Figure 4-1, is a crucial part of the observability of X. If signal F always 

takes value zero, the output of the multiplier will always be zero, regardless of the 

value of signal X; in this case, signal X is effectively cut off from ever reaching the pri- 

mary output. If, however, signal Y always takes value one, the multiplier will transmit 

the signal X unchanged to its output, making it easier to propagate X to the primary 

output. Thus, the observability of signal X can not be considered without first consid- 

ering the controllability of signal Y. Since the controllability of signal Y comes from 

subcircuit B, we see that we can not remove subcircuit B from consideration. 

It turns out that the observability of signal X depends on subcircuit A as well. The 

point behind observability is to measure how easily we can propagate a change in sig- 

nal X to the primary output; this change is caused by some fault in the circuit driving 

signal X. The changes that can occur in signal X depend on which values signal X can 

take on when no faults are present. This means that if subcircuit A is such that signal X 

is constrained to take on only a certain value during fault-free operation, computing 

the observability of signal X is a different problem than if signal X is constrained in 

some other way. 
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As a result, the formula for the transparency of signal X will depend not only on the 

transparency of signal Z, represented by what we will soon define as the state-based 

transparency of Z, Tz, but also on the controllability of signals X and £ represented by 

their state probability distributions px and py. We now describe the transparency 

computation in greater detail. 

As a tool for evaluating transparency, we define a state-based transparency vector t„ 

for each signal X, where each element of the vector is a kind of conditional transpar- 

ency based on the fault-free state of the signal. We have: 

lx 

- 

*X,0 

*X, 1 

fX, 2 
= 

X, 2l*l-l_ 

Pr {X is transparent |X has fault-free state 0} 
Pr {X is transparent|X has fault-free state 1} 
Pr {X is transparent|X has fault-free state 2} 

Pr {X is transparent[X has fault-free state 2^' - 1} 

In this definition, signal X is transparent if a change in X causes a change in the pri- 

mary output. The basic idea behind txj is this: because of the presence of some fault in 

the circuit, the value of signal X has been perturbed from its fault-free value of / to 

some different value. txti is the probability that the state error can be propagated from 

signal X to the primary output. Once we have the state-based transparency vector tx 

and the state probability distribution vector px, we can write the transparency of sig- 

nal X as a dot product: 

MT (X)  = txpx (EQ 4-6) 
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The state-based transparency vectors are computed in bottom-up fashion, starting with 

the primary output, and moving signal by signal towards the primary inputs. The pri- 

mary output is an observable point with perfect transparency, and therefore has 

t = j 1 1 ... lj . We move up one level in the circuit by separating the transparency of 

a signal X into two components: the probability of propagating a state error through a 

single operation to the next signal Z in the behavior (see Figure 4-1); and the probabil- 

ity of propagating the state error from that next signal Z to the primary output. Thus, 

we will write the state-based transparency of X, tx, in terms of the state-based trans- 

parency of Z, t2. We have: 

2-1 

'X,i 

v in 2-1 

® 

V j = o 

2*   tZ,i®jPY,j 
V ; = 0 

(EQ 4-7) 

This equation shows the two components of the transparency of signal X. The first sum 

indicates the probability of propagating the state error through the single operation to 

signal Z. S    is a matrix indicating the sensitivity of the operation ® to changes in val- 

® 
ues in X, given a particular fault-free value of X and value of Y. S( .     indicates the 

probability that a change in the value of signal X, from a fault-free value of i to some 

different value /', can be observed at the output of the operation when signal Y has 

value j. This is the probability that / ®j'* i' ®j. Although in general the entire sensi- 

tivity matrix must be generated, for many practical functions it is not necessary to 

work with full matrices at all. For example, for addition, all elements of the sensitivity 
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matrix are equal to one, and the entire first sum of Equation 4-7 collapses simply to the 

value one. 

The second sum in Equation 4-7, based on the transparency of Z, indicates the proba- 

bility of propagating the state error from signal Z the rest of the way to the primary 

output. When the fault-free value of signal X is i and the value of signal Y is;', the 

fault-free value of signal Z is i ®;'; this is the reason that tx . depends on tz . @;.. 

We have not yet developed a method for transparency computation in general circuits, 

particularly in those circuits with a high degree of reconvergent fanout. Fortunately, 

we have found that it is not necessary to handle such circuits. The reason for this is that 

our test point insertion methodologies always enhance controllability first, before con- 

sidering observability. Controllability is considered first because enhancing controlla- 

bility can have an effect on observability. This was the case for our earlier example of 

a multiplier that had one input tied to zero; recall that this circuit has an observability 

problem because the zero makes it impossible to propagate the signal on the other 

input of the multiplier through the multiplier. This circuit also has a controllability 

problem, since the constant zero is not a high quality test pattern to test the multiplier. 

If the controllability problem is fixed by modifying the circuit so that the input takes 

on a wider range of values, the observability problem will be fixed, too. In contrast, 

enhancing observability has no effect on controllability; regardless of how extra 

observable points are added to a circuit, the flow of signals through the operations of 

the circuit remains the same. 
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Because controllability enhancement is done before observability enhancement, the 

circuits for which transparency must be computed are not truly general. Controllability 

enhancement frequently involves the removal of reconvergent fanout, for example, so 

in practice we do not need to be able to compute transparency for circuits with com- 

plex patterns of reconvergence. Simpler patterns of reconvergence are handled with a 

preprocessing transformation analogous to that used for controllability analysis and 

introduced in Chapter Five. 

One circuit structure that we do need to handle is that of fanout to more than one pri- 

mary output. Consider the structure of Figure 4-2, where subcircuit A and subcircuit B 

do not overlap, i.e., where the two paths to the output are independent. We first com- 

pute the transparencies of the two signals on the fanout branches, XA and X%, by the 

method already described. Clearly, the transparency of the source signal X is higher 

than the transparency of either of the branches, since the only requirement for X to be 

transparent is that we be able to propagate an error on signal X to at least one of the 

primary outputs. Therefore, there is a choice of path: through subcircuit A, through 

subcircuit B, or both. We define the transparency of the source as: 

MT (X)  = MT (XA) + MT (Xß) - MT (XA) MT (Xß) . (EQ 4-8) 
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subcircuitA ,    ' subcircuitB 
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primary output A    primary output B 

Figure 4-2. A fanout branch. 

4.3     Summary 

This chapter has provided mathematical definitions for the testability metrics used 

throughout our work. All three of the testability metrics, randomness, expected state 

coverage, and transparency, are based on the state probability distributions of the sig- 

nals in the circuit. We will present a Markov model for computing the state probability 

distributions in Chapter Five. 

There are alternatives to using the Markov model to compute the state probability dis- 

tributions. The probability distributions can be determined empirically with the use of 

Monte Carlo simulation of the circuit. It is also possible to develop heuristics to calcu- 

late the testability metrics directly, without relying on the underlying state probability 

distributions. Heuristics have the potential to be much faster to compute, since they 
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can work with scalar values rather than the vectors and matrices required for a Markov 

model approach, or the vectors and long simulation times required for Monte Carlo 

simulation. Of course, heuristics are inherently less accurate than analytical methods. 

The development of heuristics for computation of the testability metrics is beyond the 

scope of this dissertation. 



chapter 5 A Markov Modelfov BIST 

Analysis 

This chapter develops a Markov model to evaluate the test effectiveness of a circuit 

with built-in self-test (BIST) features.This model can be applied at various levels of 

design abstraction; here, we will see its use at the gate level and register transfer level 

in the structural domain, and at the algorithmic level in the behavioral domain. 

The purpose of the Markov model is to provide analytical values for the probability 

distribution of the state of each signal in the circuit; testability metrics such as entropy- 

based randomness, expected state coverage, and transparency can be computed from 

the probability distributions using the formulas given in Chapter Four. By providing a 

means for BIST analysis and evaluation, the testability metrics allow us to trade area 

and performance against test effectiveness when doing BIST insertion. 

The Markov model described in this chapter is based on previous approaches for BIST 

analysis at the register transfer level. The Markov model used here provides the fol- 

lowing advances over previous models by Chuang and Gupta [ChGu89] and Kim, Ha, 

andTront[KiHT88]: 

60 
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• a preprocessing transformation is used to remove reconvergent fanout from 

the circuits, allowing the effects of word-level correlation on test quality to 

be accurately modeled. 

• an iterative technique is developed so that the model can handle circuits 

with indirect feedback, i.e., circuits in which a register or flip-flop feeds 

back into itself via one or more intermediate registers or flip-flops. 

• the model is extended to include the newer circular BIST methodology as 

well as conventional BIST. 

This work also uses the model in a new way, to evaluate testability metrics as an aid to 

BIST insertion. 

The chapter is organized as follows. Section 5.1 presents the mathematical details of 

the Markov model for register transfer level (RTL) circuits. Section 5.2 describes a 

transformation technique for removing reconvergent fanout from an RTL circuit, pro- 

vides an example transformation, and explains how the preprocessing transformation 

is used to make the Markov model more powerful. Section 5.3 discusses the computa- 

tional complexity of the overall analysis for RTL circuits. Section 5.4 shows the same 

Markov model as applied to gate level circuits; derivations are given to show that the 

matrix computations necessary at the register transfer level are reduced to scalar equa- 

tions at the gate level. Section 5.5 describes how the Markov model can be applied at 

the algorithmic level, in the behavioral domain. Finally, Section 5.6 presents a sum- 

mary. 
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5.1     The Markov Model at the RTL 

This section describes a Markov model for the analysis of register transfer level (RTL) 

circuits with BIST features. For the purposes of this section, RTL circuits consist of 

registers, arithmetic logic units (ALUs) and buses. At this point, we consider only 

datapaths, and not control logic. First, we describe how the datapath is partitioned 

before analysis in order to make the problem more computationally tractable. Next, we 

describe the steps in analyzing a single register of the datapath. Then, we outline the 

iterative procedure that is used to resolve the analysis when a datapath contains indi- 

rect feedback. 

5.1.1     Partitioning a RTL datapath for analysis 

It is impossible to analyze most RTL datapaths as a whole, since a datapath with even 

a moderate number of registers has a very large, unmanageable number of system 

states. As a result, we must partition the datapath into smaller pieces for analysis. Note 

that if we were able to analyze the datapath in one big piece, the analysis would be 

deterministic; given a current system state and a set of primary input values, there is 

only one possible next system state. The price we pay for partitioning is that any anal- 

ysis must now be probabilistic, rather than deterministic; since we are looking at only 

a small section of the datapath at a time, we can not speak with certainty about what is 

happening in the rest of the datapath. 
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(a) a simple RTL datapath. (b) the datapath partitioned. 
Figure 5-1. An example of partitioning for analysis. 

For this application, we'd like to partition the datapath such that each partition con- 

tains the information necessary to analyze a single register. The rules for partitioning 

are simple: create one partition for each register of the datapath, where the register 

serves as the output register of the partition. The partition should consist of the regis- 

ter, any combinational logic that drives the register, plus the registers that serve as 

inputs to that combinational logic. The partition for a register is unique. The partitions 

represent the transfer of data from register to register. Figure 5-1 shows a simple RTL 

datapath and its partitions. Note that partitioning does not remove feedback loops from 

the datapath. Direct feedback manifests itself as feedback within a partition, as is the 

case with register 3 of this example, and is resolved by the Markov model. Larger 

feedback loops manifest themselves as interdependency among the partitions; for this 

example, we see that the partitions for registers 4 and 5 are interdependent, since regis- 
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ter 5 is an input to the partition for register 4, and vice versa. Subsection 5.1.3 explains 

how this type of feedback is resolved. In Section 5.2, we will see that this simple parti- 

tioning scheme is not directly applicable to all datapaths; there, a preprocessing trans- 

formation will be presented for use on some datapaths before partitioning. This will 

enable the correct modeling of a more general class of circuits. 

5.1.2     Analyzing a single register 

The objective of analyzing a single register is to find the register's state probability 

distribution p as defined in Equation 4-2 on page 47. The steps for finding p are 

described in the procedure of Figure 5-2. The remainder of this subsection describes 

the steps of the procedure in greater detail. 

Procedure AnalyzeRegister 

Step 1. Find Q, a matrix that describes the register's state transitions 

when BIST is disabled. 

Step 2. Modify Q to compute C, a matrix that describes the register's 

state transitions when BIST is enabled. 

Step 3.  Use C to compute p, a row vector describing the steady-state 

probability distribution over the register's state space. 
Figure 5-2. Procedure for analyzing a single register. 
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Step 1: Computing the BIST-disabled state transition matrix Q 

The first step in analyzing a register X is to compute a matrix describing the register's 

transitions from state to state during normal (BIST-disabled) operation. Let Q denote 

lyl lyl 
this state transition matrix. The matrix Q is 21    by 2    , where \X\ is the bit width of 

the register. Q has elements 

q.. = Pr {next register state is j I current register state is i} <EQ 5-1) 

for i,j = 0, 1,..., 21*1 - 1. The register's next state is written in terms of the local struc- 

ture of the datapath, more specifically in terms of that part of the datapath contained 

within the register's partition. The state transition matrix Q depends on the functional- 

ity of the combinational logic within the partition, and the probability distributions of 

any registers that serve as input registers to the partition. The matrix Q also depends on 

whether there is direct feedback within the partition, i.e., on whether the output regis- 

ter feeds back into itself through the combinational logic of the partition. A register 

that feeds back directly into itself is said to be self-adjacent [HuPe87]. Note that if a 

register is not self-adjacent, the next state of the register does not depend on the cur- 

rent state, and the equation for qtj is reduced to 

q.. = Pr { next register state is j} <EQ 5-2) 

for i,j = 0, 1,..., 2l*l - 1. In this special case, all rows of the state transition matrix Q 

are identical. 
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Step 2: Modifying Q to compute the BIST transition matrix 

Step 2 of the procedure AnalyzeRegister modifies Q, the register's state transition 

matrix for the BIST-disabled case, to compute C, the state transition matrix for the 

register when BIST is enabled. The elements of C are defined by: 

c.. = Pr { next register state is j I current register state is i} (EQ 5-3) 

keeping in mind that BIST is enabled. How C is computed depends on the BIST meth- 

odology used. For example, suppose that the register is a multiple input signature reg- 

ister (MISR). From the way that MISRs work (see Figure 2-4 on page 18 for a gate 

level view), we know that the next state of the register is the bitwise XOR of what the 

next state would be if BIST were disabled and a shifted version of the register's cur- 

rent state, with a modulo-2 sum of the values at the feedback taps shifted into the 

newly vacated bit. Suppose that the register moves from state i to state k when BIST is 

disabled; when BIST is enabled under the same conditions, the register will move 

from state i to state k ® SHL(Z, f(i))}2 where/(7) is the value of the feedback bit. 

Information about what the next state would be if BIST were disabled comes from the 

matrix Q, computed in Step 1. For MISRs and TPGRs, each element of C can be 

expressed in terms of Q by: 

cij = «,-,yesHL(i,/(0)' (EQ5"4) 

1. © denotes a bitwise XOR. 

2. SHL(i, b) denotes a left bit shift of the binary representation for i, with the bit b shifted into the newly 
vacated least significant bit. 
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The circular BIST and circular self-test path cases are similar, except that the next state 

of a register depends also on the bit value being shifted into the register from the circu- 

lar BIST chain. From the way that a circular BIST test register works (see Figure 2-7 

on page 21 for a gate level view), we know that the next state of a register is the bit- 

wise XOR of what the next state would be if BIST were disabled and a shifted version 

of the register's current state, where a bit from the preceding register on the circular 

BIST chain is shifted into the vacated bit position. Consider register 7 of the datapath 

of Figure 5-3 as an example. If BIST were disabled, register 7's next state would be 

the value coming into register 7 from the data path (i.e., from register 6). Since BIST is 

enabled, this value is bitwise XORed with a shifted version of the current state; this 

shifted version is a right shift of the current state, where the newly vacated most signif- 

icant bit is filled with a value coming from the circular self-test path, namely, the most 

significant bit of register 1. 

-j   REGl   |<- j   REG2   [<- -|  REG3   \* 

* * 

REG4 REG5 

3 1 
+ 

REG6 

Figure 5-3. An example RTL datapath using the circular self-test path technique. 
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For the general case, let p denote the probability that the bit shifted into the register 

from the circular BIST chain is a 1. Since the bit comes from either the most or least 

significant position of the preceding register T (depending on whether that register is 

shifted to the right or to the left), p can be written in terms of 7"s state probability dis- 

tribution, where pTi denotes the probability that register Tis in state / (see Equation 

4-2 on page 47): 

p = Pr { shifted-in bit is a 1}  = 

T   -1 

I 
i.2m'1 

2171-1-! 

pT . if register T is left-shifted 

(EQ 5-5) 

]T    pT 2i + i   if register T is right-shifted. 
V      J=0 

Thus, for a circular BIST test register, each element of C can be expressed in terms of 

Q and p by the following: 

cij = 

MiJ © SHL(U) + ( 1 " P} qiJ ® SHL(/,0)       if reSiSter R iS left"shifted 

(EQ 5-6) 

P«U ® SHR(U) + (l ~ P} «u e SHR(i,0)     if «gister R is right-shifted. 

Equation 5-6 shows that each element of C is written in terms of two different ele- 

ments of Q. In fact, each row of C is a linear combination of two different permuta- 

tions of the same row of Q. 

3. SHR(/, b) denotes a right bit shift of the binary representation for i, with the bit b shifted into the 
newly vacated most significant bit. 
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Step 3: Computing the register state's probability distribution 

Step 3 of the procedure AnalyzeRegister uses C, the register's state transition matrix 

when BIST is enabled, computed in Step 2, to compute the register's state probability 

distribution in the steady state. Suppose that p (t) denotes the probability distribution 

at time t. The register state transition matrix C relates p (t + 1)   to p (t) : 

p(t+l)  = p(t)C. 

It's easy to see that C is a Markov matrix [Stra88]; all of its elements are nonnegative, 

and each row adds to 1. Like all Markov matrices, C has an eigenvalue equal to 1. This 

means that the probability distribution will settle down to a steady-state; it is this 

steady-state probability distribution p that we need. We have 

P  = pC . (EQ 5-7) 

From this equation, p is the left eigenvector of C corresponding to eigenvalue 1. We 

can solve the equation for p in the following way [Stra88]: 

T 
• Step A. Compute C -/. 

• Step B. Do a QR decomposition of CT-I, QT(CT-I) = M. 
_r 

• Step C. Solve the upper triangular system Mp   = 0 for p. 

It is always the case that the matrix M is rank deficient, so that p has a non-trivial 

(non-zero) solution. 
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5.1.3     Iterating to analyze the entire datapath 

Two steps (Steps 1 and 2) of the procedure AnalyzeRegister, given in Figure 5-2, use 

information about other registers in the datapath, and assume that these other registers 

have already been analyzed. For some datapaths, it is possible to analyze the registers 

in such an order that the information needed has already been computed; for these 

datapaths, each register need be analyzed only one time. However, for datapaths con- 

taining indirect feedback, it is impossible to choose such an order. For example, con- 

sider the datapath fragment of Figure 5-4, which has indirect feedback. Analysis of 

register REG5 requires knowledge about register REG4's probability distribution, and 

vice versa. The situation is similar for any datapath using the circular self-test path 

technique, since each register in a circular self-test path feeds back into itself indirectly 

through the path. In order to handle these cases, all registers are assigned arbitrary ini- 

tial probability distributions, and an iterative process, shown in Figure 5-5, is used to 

repeatedly analyze registers until the probability distributions have reached steady- 

state values. In general, there is no guarantee that the iterative process will terminate; 

however, in our experience, the process does terminate for practical cases, and most 

datapaths require only a few iterations. 

We now turn to a transformation that can be used to process the datapaths before 

applying the Markov model, making the model applicable to a wider variety of datap- 

aths by enabling it to accurately handle word-level correlation. We describe the trans- 
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Figure 5-4. An RTL datapath fragment with indirect feedback. 

formation on datapaths at the register transfer level, although it is applicable to circuits 

at the gate and algorithmic levels as well. 

5.2    A Circuit Transformation Technique 

This section describes a technique for transforming a general RTL circuit into a func- 

tionally equivalent RTL circuit with no reconvergent fanout. Probabilistic analysis of 

any kind can be greatly simplified by assuming that there is no correlation among the 

input registers of a partition, i.e., that one input register's state is independent of every 

other input register's state. In practice, word-level correlation occurs frequently, and is 

a direct result of fanout in the circuit structure. For example, consider the circuit of 

Figure 5-6(a). Figure 5-6(b) of the figure shows a direct partitioning of the circuit. 

When register 6 is analyzed, information about registers 4 and 5 is used. The states of 
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start 

Assign arbitrary initial 
probability distributions 

to the registers. 

I 
Flag all registers as 
needing analyzing. 

no 

Pick one flagged register F, 
find its probability distribution 

using Procedure AnalyzeRegister, 
and remove its flag. 

no 
Has 

register F's 
probability distribution^ 

changed 
significantly?. 

yes 

Flag all registers driven by F 
as needing analyzing. 

finish^ 

Figure 5-5.   Iterative procedure for analyzing an RTL datapath. 
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(d) A partitioning of the transformed circuit. 
Figure 5-6. A simple transformation example. 
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these two registers are heavily correlated; both are functions of the state of register 2 at 

the previous clock. Any probabilistic analysis operating directly on the original circuit 

should take this correlation into account. 

Figure 5-6(c) and Figure 5-6(d), which show the transformed circuit and the corre- 

sponding partitions, respectively, demonstrate how the transformation technique pre- 

sented here simplifies the probabilistic analysis of a circuit by enabling us to express a 

register's state in terms of a set of uncorrelated, statistically-independent source regis- 

ters. The reconvergent fanout is subsumed by the combinational logic, where it can be 

taken into account easily; the penalty is that we must now work with more complex 

combinational logic blocks. If desired, a dummy register may be added between CLB 

C" and register 6 to preserve the timing of the circuit by providing an additional clock 

cycle of delay; for many kinds of probabilistic analysis, including this one, such tim- 

ing details are not important, and the register can be omitted. For the transformed cir- 

cuit, the inputs to each partition are independent, and subsequent probabilistic analysis 

may ignore correlation. 

Note that the transformation described in this section does not remove feedback loops 

from the circuit. Direct feedback loops are taken into account by the Markov model, as 

previously described in Subsection 5.1.2, and indirect feedback loops are resolved 

through the iterative process previously described in Subsection 5.1.3. 
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5.2.1     Preliminary definitions 

Correlation between registers is determined by the sources of the registers, and there- 

fore information about the flow of data through the circuit is needed. We say that reg- 

ister T is a parent of register R if there is a path from T to R that passes through only 

combinational logic.4 The set of registers that are parents to register R is denoted 

P(/?). Next, we say that register T is a grandparent of register R if there is a register X 

such that T is a parent of X and X is a parent of R. In the circuit of Figure 5-6(a), regis- 

ter 6 has two parents (registers 4 and 5) and three grandparents (registers 1, 2, and 3). 

Since we must trace the sources driving R from an arbitrary distance up the circuit, we 

now generalize the concept of parents in the following way: a register T is a distance-i 

source of register R if there is a path from register T to register R that passes through 

exactly / intermediate registers. Thus, parents are distance-0 sources, grandparents are 

distance-1 sources, and so on. Note that if a circuit contains feedback, it is possible for 

a register R to be a distance-/ source of itself. The set of distance-/ sources of R is 

denoted /4{R). 

Two registers Rl and R2 are said to have a common source if there is a register T and a 

distance / such that register Tis a distance-/ source of both Rl and R2. If two registers 

have a common source, their states are correlated, that is, the probability that register 

Rl is in a given state / is not statistically independent of the probability that register R2 

4. This includes the trivial case of a direct register-to-register connection, for which the path from Tto 
R has no intervening logic. 
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is in a given state/ Again, the purpose of the transformation is to ensure that when we 

partition a circuit, each register's state is expressed in terms of a set of uncorrelated 

source registers. 

5.2.2 Finding the sources of a register 

The sources of a given register R can be found using the simple recursion 

f4. (R)  = ParentsOfRegisterSet {/4t_ x (R)), 

that is, the distance-/ sources of R are the parents of the di stance-(M) sources of R. If 

the circuit contains no feedback, register R has a finite number of generations of 

sources; in tracing up the circuit, the primary input registers are eventually reached. 

However, if R or one of its sources is in a feedback loop, R has an infinite number of 

generations of sources. Figure 5-7 formalizes an algorithm for finding the sources of a 

register. 

5.2.3 Transforming and partitioning the circuit 

An algorithm for transforming and partitioning the circuit is shown in Figure 5-8. 

Given a register R, it returns information about /?'s partition in the transformed version 

of the circuit. The main point here is that we would like to keep the partitions as local 

as possible. At the same time, we may not be able to choose partitions in the straight- 

forward way described in Subsection 5.1.1, since we would like to be sure that the 
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Algorithm ParentsOfRegisterSet 
Input:  An RTL circuit and a set of designated registers S. 
Output: The set of parents of S, P(S). 

Set P(S) = 0. 
fory = 1 to ISI;       /* iterate through registers in S.*/ 

Let R be the/h register in the set S. 

Set P(S)  = P(S) uP(R) . 
end; 

Algorithm SourcesOfRegister 
Input:    An RTL circuit with a designated register T. 
Output: The number of generations gen of sources of register T, 

and the sets /^,<r) for 0 < / < gen. 

if  (P(T)  = 0)do; 
/* Register Thas no parents, and therefore no sources. */ 
Set gen to 0. 
return; 

end; 

Set^T) = P(T). 
Initialize gen to 1. 
while (true) do; 

/* Trace back another level in the circuit. */ 

if (ParentsOfltegisterSet {/4oon   AT))  =0) then do; 

return;    /* We have traced back to the primary inputs. */ 
end; 
else do; 

Set ^gen (r)  = ParentsOfRegisterSet (s4gen _l(T)). 
increment gen; 

if (>4gen _ ! (T)  = /tj (T) for somey, 0 <j < gen - 1 ) do; 

/* We have traced all the way around a feedback loop. */ 
return; 

end; 
end; 

end; 

Figure 5-7. Algorithm to find the sources of a register. 
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input registers to the partition have statistically-independent states. The algorithm 

starts with a straightforward, small partition, and enlarges it one step at a time as nec- 

essary until all correlation among the input registers of the partition is eliminated. 

As the algorithm proceeds, it must keep track of the expression for the state of the out- 

put register in terms of the states of the input registers to the partition. This expression 

is most easily stored as a rooted binary tree with the internal nodes of the tree repre- 

senting the operations performed by the combinational logic blocks, and the leaves of 

the tree representing the registers serving as inputs to those operations. Such a tree is 

commonly called an expression tree. When the expression tree is traversed in depth- 

first order, the expression is created in infix notation. Let ^denote the set of registers 

serving as leaves of the tree; these registers are the input registers to the partition. 

As an example of the transformation algorithm and the use of the expression tree, con- 

sider the circuit of Figure 5-6(a). We would like to find the proper partition for register 

6. We start by expressing the state of register 6 as a function of the states of register 6's 

parents, as shown in Figure 5- 10(a). At this point, the set of input registers to our par- 

tition is *)- {R4, R5}. We now ask whether we have written the state of register 6 in 

terms of a set of statistically-independent registers; the answer is no, since registers 4 

and 5 have a source in common (register 2 is a distance-0 source of both register 4 and 

register 5). As a result, we expand our expression tree around registers 4 and 5 using 
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Algorithm TransformAndPartition 
Input:    An RTL circuit with a designated register R. 
Output: Information about register /?'s partition in a transformed version of the 

circuit, specifically: 
*?:    the set of input registers for the partition. 
S.   an expression tree for the state of R written as a function of the 

states of the registers in *). 

if (P(R)  = 0) then do; 
/* In the special case that R has no parents, return a trivial partition. */ 

Set 7 = 0 and 5= NIL. 
return; 

end; 

/* Let 7 designate the input registers to the partition; start by initializing 
the expression tree for R's state so that it expresses /?'s state as a function 
of the states of R's parents. */ 

Set S to a single leaf node, register R. 

S = ExpandExpressioriTree (P(R)).   /* See Figure 5-9 and Figure 5-10. */ 
V=P(R). 

while (true) do; 
if (two or more registers in *? have a common source) then do; 

Let T denote the common source, and let / denote the distance. 

Let *?corr a *) be the set of registers for which register T is a 

distance-/ source. 
/* Update the partition input set by replacing the correlated registers 

with their parents. */ 

7=  (Mcorr) vParentsOßegisterSet(Vcorr) . 

I* Update the expression for /?'s state to be in terms of the new 
partition input set. */ 

S = ExpandExpressioriTree {*?corr). I* See Figure 5-9 and Figure 5-10. */ 
end; 

/* R is written in terms of a set of uncorrelated source registers. */ 
else return; 

end; 

Figure 5-8. Algorithm to transform and partition a circuit. 
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Algorithm ExpandExpressionTree 
Input:     An expression tree S and a set of registers S. 
Output: A modified expression tree (expanded around the registers in S). 

for each leaf register L in the tree do; 
if (Le S) then do; 

/* Expand the tree around this leaf. */ 
Replace this leaf of the tree with a subtree expressing the state of L 
in terms of the states of the registers in P(I). 

end; 
end; 

Figure 5-9. Algorithm to expand an expression tree. 

register 1 register 2        register 2        register 3 

(a) The initial expression „. . ,     . „     .     , s r (b) expansion around registers 4 and 5. 

Figure 5-10. Expansion of an expression for register 6. 

the ExpandExpressionTree algorithm of Figure 5-9; these expansions are shown in part 

(b) of Figure 5-10. Our new input register set is *} = {Rl, R2, R3}. At this point, we are 

done, since there is no correlation among the registers of *?. 

5.2.4     A more complex transformation example 

This subsection provides a detailed example of the transformation and partitioning 

algorithm by finding the proper partition for register 1 of the circuit of Figure 5-11. 

The circuit is shown completely transformed and partitioned in Figure 5-12. When 
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Figure 5-11. An example RTL circuit. 

finding the partition for register 1, the algorithm begins by expressing the state of reg- 

ister 1 as a function of the states of its distance-0 sources, registers 6 and 8; this initial 

partition is shown in Figure 5- 13(a). It then determines that registers 6 and 8 are corre- 

lated sources, since they have a distance-3 source in common; register 1 drives both 

register 6 and register 8 via paths   (REG1 -> REG8 -> REG1 -> REG3 -> REG6) 

and  (REG1 -» REG3 -» REG6 -» REG1 -> REG8), respectively. As a result, the 

expression for the state of register 1 is expanded around registers 6 and 8, to get the 

partition shown in Figure 5- 13(b). Again, the algorithm looks for correlation among 

the input registers of the partition, and discovers that registers 8 and 2 are correlated; 
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Figure 5-12. The circuit of Figure 5-11, transformed and partitioned. 
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register 2 is a distance-0 source of both registers. As a result, the expression is 

expanded around registers 8 and 2, giving the partition of Figure 5- 13(c). After deter- 

mining that no two input registers to this partition are correlated, the algorithm returns 

this partition as the final partition. 
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(c) 
Figure 5-13. The steps in finding a partition for register REG1 of the circuit of 

Figure 5-11. 
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Note that the input registers to the partition are sources of varying distance from regis- 

ter 1. Register 3 is a distance-/ source of register 1, while register 12 is a distance-2 

source. Thus, the partition expresses the state of register 1 at time t as a function of the 

states of register 3 at time t-2 and register 12 at time t-3. This does not present a prob- 

lem for the analysis, since we deal with steady-state probability distributions, which 

do not change from time step to time step. Dummy registers can be inserted for other 

applications for which the timing must be preserved. 

5.3     Computational Complexity of the Analysis 

The overall execution time for analyzing a circuit is dominated by the time taken for 

the Markov analysis; the preprocessing transformation is very fast in comparison (less 

than a second of CPU time for the examples). We consider two components of the 

analysis separately: how the time for the overall analysis process described in Subsec- 

tion 5.1.3 grows with the number of registers in the circuit, and how the time taken for 

the procedure analyzing a single register (Procedure AnalyzeRegister, given in Figure 

5-2) grows with the bit width of the register. 

The overall analysis process is iterative in nature. A single iteration analyzes each reg- 

ister in the circuit at most once, and so the time per iteration grows linearly with the 

number of registers. An exact complexity analysis of the overall process has not been 

done because determining the number of iterations needed is difficult, and would 
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require a numerical analysis technique. In general, circuits with indirect feedback take 

the most time, because they require more iterations. In our experience, most circuit 

require only a few iterations. 

The time required to analyze a single register grows exponentially with the size of the 

register; this growth is inherent to the problem, since each possible register state must 

be examined. It should be noted that for real circuits, registers are of fixed size, and so 

it is important only that the analysis procedure be tractable for that size register. The 

overall execution time is reasonably fast for the four bit- and nine bit-wide register 

transfer level datapaths used as examples in Chapter Eight; our slowest example 

required less than four seconds of CPU time on a SUN SPARCstation IPC with 36 MB 

of memory. However, the procedure as it stands now is slow for larger registers, e.g. 

16 or 32 bits. It is hoped that further research will find ways to speed up the analysis. 

Even as it stands now, the model provides insight into test quality, and thus is useful in 

validating faster heuristics; our research is exploring heuristics to compute the ran- 

domness and transparency metrics directly, without reliance on the underlying vectors 

and matrices. 
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5.4     The Markov Model at the Gate Level 

Up to this point, this chapter has described a Markov model for the analysis of register 

transfer level circuits. We now shift focus to examine the special case when we have a 

gate level circuit instead. We start by grouping the individual gates of the gate level 

circuit into combinational logic segments, so that we can produce a "pseudo-RTL" 

view of the circuit. At this point, the procedure for calculating the 1-probability of one 

flip-flop in a gate level circuit is analogous to calculating the probability distribution 

of a register in a RTL circuit, shown in Figure 5-2. The only differences are that at the 

gate level, signals are one bit wide, so the probability distribution for a signal's state, 

which is represented as a vector at the register transfer level, can be represented with a 

single number, the 1-probability for the signal. In addition, the state transition matrices 

used by the Markov model are now always two by two. These differences mean that 

the Markov model analysis done at the register transfer level can be replaced with sim- 

ple scalar equations at the gate level. These equations provide analytical values for the 

1-probability of each flip-flop in the circuit; entropies may be derived from the 1-prob- 

abilities using Equation 4-1 on page 47. 

This section begins by describing how to create the "RTL" view of the gate level cir- 

cuit. It then describes a computation method for the 1-probabilities of the signals 

throughout a circuit. Finally, it shows how this computation method is derived from 

the more general Markov model of Chapter Five. 
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5.4.1     Creating a "RTL" view of a gate level circuit 

Before we can do a probabilistic analysis of a gate level circuit, we must identify the 

cone of logic that is driving each flip-flop and primary output of the circuit. This 

allows us to create a "RTL" view of the gate level circuit. Actually, "flip-flop transfer 

level" may be a more appropriate term, since the components of our "RTL" view are 

single flip-flops rather than registers, and combinational logic cones, or blocks with a 

single bit output rather than typical combinational logic blocks that have more than 

one bit of output. Note that if the output of a gate fans out, it may drive more than one 

of the flip-flops in the circuit. In this case, that gate will appear in more than one of the 

logic cones in the "RTL" view. An example of this process will be given in Chapter 

Seven, when we use Markov analysis to do BIST insertion in a gate level submodule 

of an industrial design. 

As an aside, we mention here some recent work, presented in [PaBN94], that derives a 

true register transfer level circuit from a gate level circuit. The method begins in the 

same way we do, by grouping the gates into the logic cones that drive each flip-flop 

and primary output. It then attempts to look for logic cones that have similar functions 

so that it can group individual flip-flops into registers in a meaningful way. For exam- 

ple, if it notices that a number of the logic cones are bit slices of an adder, it will group 

those bit slices together, joining the flip-flops at the outputs of the cones into a register. 

Note that even in the general case, when there is no clear relationship between the 

logic cones, it is always possible to group flip-flops together to do a true register trans- 



fer level analysis by allowing general "arithmetic logic units." However, this work is 

most meaningful if there is some underlying register transfer level structure inherent to 

the gate level circuit. 

5.4.2     1-probability computation 

This subsection presents a procedure for the computation of 1-probabilities of various 

signal lines in a sequential circuit. Note that if the circuit were exclusively combina- 

tional, we could find 1-probabilities for the lines of the network using the signal prob- 

ability algorithm of Parker and McCluskey (see [PaMc75], [BaMS87]). This 

algorithm expresses the 1-probability at the output of a combinational logic block as a 

function of the 1-probabilities of the inputs of the combinational logic block. The key 

to the algorithm are input/output signal probability relationships for the basic gates, 

shown in Table 5-1. However, since we will be working with sequential circuits, we 

will require more than input-output relations for gates; we must also be concerned 

with the 1-probabilities of the values stored in the flip-flops, since the signal probabil- 

ities depend not only on the random inputs, but also on the state of the flip-flops of the 

CUT. The Markov model expresses the next state of a flip-flop of the circuit as a func- 

tion of the current state. As we shall see in the next subsection, computing the flip-flop 

1-probabilities necessitates classifying the flip-flops in terms of whether they feed 

back directly into themselves, and whether they are test registers included in the circu- 

lar self-test path (for circuits using the circular BIST methodology). The Markov 
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model yields the set of formulas for the computation of flip-flop 1-probabilities shown 

in Table 5-2, where the notation used is defined in Table 5-3. The signal probabilities 

PCD PCLO> 
andpcLi are computed using the Parker-McCluskey algorithm. 

We would like to underscore one fact about the formulas of Table 5-2 for circular 

BIST test flip-flops. Note that in both the feedback and no feedback cases, the 1-prob- 

1 
ability of a circular BIST test flip-flop is equal to ~ as long as pg, the 1-probability of 

1 
the preceding flip-flop in the circular BIST chain, is - • hi the case of circular BIST, 

this means that if the first flip-flop in the chain of test flip-flops is driven by a good 

quality test pattern generator, all of the flip-flops in the chain will generate highly 

pseudorandom test patterns, regardless of the nature of the circuit under test. For the 

circular self-test path technique, for which the ends of the chain of test flip-flops are 

connected to form a circle, if one flip-flop in the circular self-test path has good ran- 

domness properties, all of the flip-flops in the circular self-test path will have good 

randomness properties. 

5.4.3     An example of 1-probability computation 

This subsection presents a small example of the 1-probability computation. The exam- 

ple circuit of Figure 5- 16(a), which builds a JK flip-flop out of a D flip-flop and some 

combinational logic, has one flip-flop that feeds back directly into itself. 
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gate type input 1-probabilities output 1-probability 

it-input AND PbP2>->Pk 

k 

II P, 
i= 1 

&-input OR Pl,P2>--Pk 

k 

i= 1 

&-input NAND PbP2>->Pk 

k 

'-IIP, 
i= 1 

&-input NOR PbP2>-'Pk 

k 

n (i-/>p 
/=i 

2-input XOR PbPl Pl+P2-2PlP2 

NOT P 1-/7 

fable 5-1. Input/outr tut signal probability relati ons (for combinational log 

The first step is 1-probability computation for the state of the flip-flop. Since the cir- 

cuit has direct feedback, two conditional 1-probabilities, pCL0 and Pew corresponding 

to cases in which the feedback has value '0' and value '1', respectively, are computed. 

The appropriate circuit for the computation ofpCL0 is shown in Figure 5-16(b); the 

annotated 1-probabilities of the signal lines come from a straightforward application 

of the gate relationship formulas of Table 5-1. For example, since the inverter on the K 

line has an input 1-probability of 0.5, its output probability is (1 - 0.5) or 0.5. The only 

exception is when the inputs to a gate are correlated due to reconvergent fanout; then, 
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flip-flop type formula for 1-probability 

no-feedback, normal PCL 

no-feedback, circular BIST PG - 2PGPCL + PCL 

feedback, normal 
PCL0 

{+
(PCLO-PCLO 

feedback, circular BIST 
PG~

2
PGPCLO 

+
 PCLO 

[+^CL0-PcLl^ -2PG(PCLO~PCLO 

Table 5-2. Formulas for computation of flip-flop 1-probabilities (for sequential 
logic). 

notation meaning 

PCL 

for a flip-flop F without direct feedback, the signal prob- 
ability for the output of the combinational logic driving 

the flip-flop. See Figure 5- 14(b). 

PCLO 

for a flip-flop F with direct feedback, the conditional 
signal probability for the output of the combinational 
logic driving the flip-flop, given that the feedback line 

has value '0'. See Figure 5-15(b). 

PCLl 

i 

for a flip-flop F with direct feedback, the conditional 
signal probability for the output of the combinational 
logic driving the flip-flop, given that the feedback line 

has value ' 1'. See Figure 5-15(c). 

PG 

i 
for a test flip-flop F, the 1-probability of the flip-flop G 
that precedes F in the circular self-test path. 

Table 5-3. Notation for 1-probability formulas. 
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Figure 5-15. The feedback case. 
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Figure 5-16. An example calculation. 

a larger portion of the circuit, with uncorrelated inputs, must be considered. This is the 

case for the OR gate; to find the 1-probability at the output of the OR gate, we must 

write a truth table showing the output's value as a function of J, K, and the feedback 

line. Each line of the truth table corresponds to a different combination of values for J, 

K, and the feedback line; we can find the probability that a particular combination 

occurs from the individual 1-probabilities of J, K, and the feedback line. For example, 

the probability that combination (J, K, feedback) = (T, '0', T) occurs is 

PyU-/^feedback' 

The 1-probability at the output of the OR gate is found by summing the probability of 

occurrence of all those input combinations that result in a output of ' 1'. 
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From the figure, we see üiatpCL0, the 1-probability at the output of the combinational 

logic segment, has value 0.5. A similar computation, this time setting the 1-probability 

of the feedback line to 1, gives a value of 0.5 for pCL1. Finally, the 1-probability of the 

flip-flop is computed by using the appropriate formula from Table 5-2: 

_ PCLO .5 
PF=
^(PCLO-PCLO 

=
 

{+
^

5
--

5)
" ' 

Oncepp, the 1-probability for the flip-flop, has been computed, the (unconditional) 1- 

probabilities for all signal lines can be recomputed using the Parker-McCluskey algo- 

rithm, this time using the actual value for pF instead of a constant 0 or 1. These final 1- 

probabilities are shown annotated to each signal line of Figure 5- 16(a). 

5.4.4     Iterating to analyze the entire circuit 

As was the case with register transfer level circuits, an iterative procedure must be 

used to resolve indirect feedback. For exclusively feed-forward circuits, only one iter- 

ation is needed, but for circuits with circular BIST or indirect feedback loops, an itera- 

tive process analogous to that of Figure 5-5 is used to assign arbitrary initial 1- 

probabilities to the flip-flops and then repeatedly analyze flip-flops until the 1-proba- 

bilities have reached steady-state values. 
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5.4.5 A note about computational complexity 

The original Parker-McCluskey algorithm for signal probability calculation has com- 

plexity that grows exponentially with the size of the circuit in the worst case. An 

extension by Savir et. al. [BaMS87] reduces complexity by cutting reconvergent 

fanout in the circuit, thereby turning the circuit into a tree. In doing so, exactness is 

sacrificed; the cutting algorithm produces upper and lower bounds, rather than exact 

signal probabilities. For the industrial subcircuit that we use as an example in Chapter 

Seven, we were able to apply the original, exact algorithm; however, for larger cir- 

cuits, a technique like Savir's, which has complexity that grows linearly with the size 

of the circuit, may be more appropriate. 

The next subsection provides analytical derivations for the 1-probability formulas of 

Table 5-2 in terms of a Markov model for the state of the flip-flops in the sequential 

circuit. 

5.4.6 Derivation from the Markov model 

This subsection presents a mathematical derivation for the formulas of Table 5-2 in 

terms of a Markov model. The Markov model describes the operation of a sequential 

circuit with circular BIST, using an "RTL" view of the circuit. The major difference 

that distinguishes the Markov model at the gate level from the Markov model at the 
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register transfer level is that at the gate level all state transition matrices are two by 

two and each signal's state probability distribution vector can be replaced with a single 

number, the 1-probability of the signal. 

Step 1. Q for gate level circuits 

The first step in analyzing a flip-flop is to compute a matrix Q describing the flip- 

flop's transitions from state to state during normal (BIST-disabled) operation. The 

form of the matrix Q depends on whether the flip-flop feeds directly back into itself. 

For a flip-flop F that does not feed back directly into itself (see Figure 5-14), we have 

simply that: 

q.. = Pr { next flip-flop state is j } 
= Pr {the combinational logic driving F has output value j} 

for i e {0, 1} . This probability can be found by applying the Parker-McCluskey algo- 

rithm to the combinational logic driving F [BaMS87]; thus, we have: 

0 = 
1~PCL      PCL 
l~PCL      PCL 

(EQ 5-8) 

where p^ is the 1-probability for the output of the combinational logic driving flip- 

flop F. 

A flip-flop F driven directly by a primary input is a special case of the no-feedback 

class. Since during test flip-flop F is driven directly by a TPGR that generates random 

patterns with a uniform distribution, F has state transition matrix 
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.5     .5 

.5     .5 

This can easily be modified to accommodate the use of weighted random patterns 

[BaMS87]; if, for example, a particular pseudorandom input is weighted so that it has 

value ' 1' three-quarters of the time, the proper state transition matrix is: 

0 = 
.25     .75 

.25     .75 

Flip-flops that feed back directly into themselves must be handled differently. Con- 

sider a flip-flop F that feeds directly back into itself (see Figure 5-15). As in the previ- 

ous case, the flip-flop F's new state comes from the output of the combinational logic 

driving F. The computation of 

q.. = Pr {next flip-flop state is j I current flip-flop state is /} 

requires two separate applications of the Parker-McCluskey algorithm, one in which 

the feedback has been assigned a constant value of '0' (yielding PCLO)> 
anc* one in 

which the feedback has been assigned a constant value of' 1' (yielding Pcid- We then 

have: 

Q = 
1    PCL0      PCL0 

(EQ 5-9) 
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Step 2. C for gate level circuits 

Step 2 of the analysis procedure of Figure 5-2 modifies Q, the flip-flop's state transi- 

tion matrix for the BIST-disabled case, to compute C, the state transition matrix for the 

flip-flop when BIST is enabled. Note that if the flip-flop is not in the circular self-test 

path, in test mode it operates exactly as it does in normal mode, and therefore C-Q. 

For circular BIST test flip-flops, the elements of C are obtained by application of 

Equation 5-6: 

C = 
?oo (l -PG> 

+ %IPG    <*OOPG 
+
 %I(

{
 ~PG> 

qm^-pG) +4nPG    «IOPG + QU^-PG* 

(EQ 5-10) 

where PQ is the 1-probability of the preceding flip-flop G in the chain. 

Step 3. Deriving the 1-probability 

Step 3 of the analysis procedure of Figure 5-2 uses C, the flip-flop's state transition 

matrix when BIST is enabled, computed in Step 2, to compute the flip-flop's 1-proba- 

bility in the steady state. All of the analysis done at the register transfer level applies 

here as well; however, since C is two by two, it is possible to write the 1-probability as 

a simple function of the elements of C, rather than in terms of a QR decomposition. 

Suppose that/7p denotes F's 1-probability in the steady state. Equation 5-7 becomes: 

1-P/r    PF   =    l-Pf    PF 

C00     C01 

C10     Cll 

In solving the system, we find that 
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C01                      1     C00 
Pp  =  T~2    =   TZ    • (EQ5-11) 

Note that we have two equations in one unknown; it is always the case that C is rank 

deficient, so that both equations can be solved with the same value of pp. 

The formulas of Table 5-2 are found by simple substitution of the values for the ele- 

ments of C into Equation 5-8 for the four separate classes of flip-flops. For example, 

consider a normal (non-test) flip-flop that does not feed back into itself. Since C = Q in 

this case, we substitute the elements of Q, shown in Equation 5-8, into Equation 5-11: 

 ^01 P_CL  
pF~ l-cu + c01 " 1-PCL+PCL ~PCL 

5.5     The Markov Model at the Algorithmic Level 

This section describes how the same Markov model that was used in Section 5.1 to 

analyze circuits at the register transfer level (RTL) can be used to analyze algorithmic 

descriptions of circuits in the behavioral domain. Such descriptions consist of signals 

and operators, and are commonly depicted using dataflow graphs; Figure 5-17(a) 

shows a data flow graph for the behavior ax+b. 

We do our data flow graph analysis by mapping the data flow graph into an equivalent 

RTL circuit and analyzing the RTL circuit using the Markov chain model already 

described. We begin the mapping by choosing a schedule for the data flow graph; this 
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(a) data flow graph. (b) RTL structure. 

Figure 5-17. One-to-one mapping between a scheduled data flow graph and the 
RTL structure used to analyze the graph. 

requires assigning the operator nodes of the data flow graph to time steps. Our choice 

for the data flow graph of Figure 5- 17(a) is designated on the figure by separating the 

time steps with broken lines. Note that there are many ways to schedule a given data 

flow graph; it does not matter which one we choose, because the results of the analysis 

will be the same for all of them. Figure 5- 17(b) shows the RTL mapping for the exam- 

ple.The mapping replaces each operator node in the data flow graph with an arithmetic 

logic unit (ALU). Each edge of the graph, which represents an n-bit wide signal, is 

mapped to a number of n-bit wide registers in series. The number of registers is deter- 

mined by counting the number of time step boundaries that the edge crosses. For 

example, the signal coming from primary input b crosses over two time step bound- 

aries before it enters the adder, so it is mapped to two registers in the RTL circuit, 

labelled b and b'. The mapping is done this way so that correlation due to reconvergent 

fanout in the data flow graph is preserved in the register transfer level circuit. Note that 
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this mapping is solely for the purpose of analysis; we do not propose physically imple- 

menting the circuit this way. We then analyze the RTL circuit, and transfer the ran- 

domness, expected state coverage, and transparency metrics from the registers of the 

RTL circuit back to the edges of the data flow graph. 

5.6    Summary 

A Markov model for the analysis of conventional and circular BIST was presented. 

The model is applicable at a variety of levels of design abstraction; mathematical 

details were provided for the gate level, the register transfer level, and the algorithmic 

level. In addition, a transformation technique, used to process the circuit before apply- 

ing the Markov model, was presented; this transformation technique strengthens the 

analysis by allowing accurate modeling of the effects of word-level correlation within 

the circuit. The model will be used to provide analytical measures for our testability 

metrics: randomness, expected state coverage, and transparency. Chapter Eight will 

include a number of examples for which the analytical values for the testability met- 

rics from the Markov model are compared to actual results obtained from simulation, 

to the end of showing that the Markov model accurately captures what happens within 

a circuit. 
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The testability metrics computed using the Markov model will be used throughout the 

rest of this dissertation. In Chapter Six, randomness and expected state coverage will 

be used as tools to examine some structural difficulties inherent to the circular self-test 

path technique. In Chapters Seven, Eight, and Nine, the testability metrics will be used 

to guide BIST insertion at the gate level, register transfer level, and algorithmic level, 

respectively. The testability metrics provide a means of measuring the effect of a test 

insertion decision (concerning which signals should correspond to test registers or test 

flip-flops) on test quality. 



chapter 6 Structural Constraints on 

Circular Self-Test Paths 

This chapter develops constraints on the structure of circular self-test paths in register 

transfer level (RTL) circuits with circular built-in self-test (BIST) features. The con- 

straints arise from the desire to avoid bit-level correlation, which can have a devastat- 

ing effect on test quality. Two causes of bit-level correlation are examined, with 

examples demonstrating the resulting degradation in test quality. The first cause of bit- 

level correlation, register adjacency, is a by-product of the ordering of the registers 

within the circular self-test path. The second cause of bit-level correlation stems from 

the shifting nature of the circular self-test path. 

The work described in this chapter goes beyond previous work in a number of ways. 

First, the concept of register adjacency is generalized to arbitrary distances. Second, a 

newly discovered source of bit-level correlation in circuits using the circular self-test 

path technique is described. This correlation is a natural consequence of the shifting of 

bits in the circular self-test path; its presence greatly increases the probability of sys- 

tem state cycling, which can have a devastating effect on test quality. Guidelines for 
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avoiding this source of correlation by placing a new constraint on the structure of the 

circular self-test path are presented. 

This chapter is organized as follows. Section 6.1 reviews the circular self-test path 

insertion process, which is the motivation for our work. Section 6.2 covers material 

preliminary to the main topic of the chapter; it describes how the system state transi- 

tion graph can be used as a tool in understanding system state cycling. Section 6.3 

describes a structural constraint on the circular self-test path arising from the desire to 

avoid bit-level correlation caused by register adjacency. Section 6.4 describes a con- 

straint arising from a bit-level correlation that occurs because of the shifting nature of 

the circular self-test path. Section 6.5 is a summary. 

6.1     Circular Self- Test Path Insertion 

The process of inserting circular self-test path features into a register transfer level cir- 

cuit requires two main steps. The first is the selection of registers for the circular self- 

test path; this can be accomplished in a number of ways, ranging from selecting a max- 

imal path of all registers, to selecting a minimal path of only the primary input and pri- 

mary output registers. Selection of registers can also be done using heuristics based on 

circuit structure and testability measures, similar to what [POLB88] and [LiZB93] 

have done at the gate level. In Chapter Eight, we will do BIST insertion at the register 
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transfer level based on testability metrics, computed using the Markov model 

described in Chapter Five. 

The second step of circular self-test path insertion is the formation of the circular self- 

test path from the selected registers. A circular self-test path consists of an ordered and 

oriented set of circuit registers. An algorithm to link the selected registers into a circu- 

lar self-test path must choose both the ordering for the registers in the path, and the ori- 

entation or shift direction, right or left, for each register in the path. 

Analysis of the quality of the circular self-test path technique as a testing technique so 

far has assumed that there is no statistical correlation between the streams of bits 

applied to the two inputs of any of the exclusive OR (XOR) gates in the circular self- 

test path [PiKK92].   Figure 6-1 shows a single flip-flop from the circular self-test 

path. The assumption is that bits x and y are not correlated. Unfortunately, for some 

circular self-test path structures, this assumption does not hold; bit-level correlation 

occurs, and test effectiveness can be severely affected. It is important to identify the 

structures that cause bit-level correlation so that they can be avoided during formation 

of the circular self-test path. This chapter examines two causes of bit-level correlation, 

and the limitations that must be placed on the structure of the circular self-test path to 

avoid the correlation. Preliminary to the discussion of these constraints, the system 

state transition graph, a tool for understanding the problem of system state cycling, is 

described. 
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Figure 6-1. A single flip-flop of the circular self-test path. 

6.2     System State Cycling 

One problem that has plagued the circular self-test path technique is that of system 

state cycling, or limit cycling. The state of a system is determined by the contents of 

the system's memory elements. Following the definitions of Brynestad, Aas, and Vall- 

estad [BrAS90], let the system state transition graph (STG) of a circuit be a directed 

graph, where the nodes represent system states and the edges represent transitions 

between system states. An example shape of an STG is shown in Figure 6-2. When in 

test mode, the system as a whole is deterministic; since no data enter the circuit via the 

primary inputs, given the current state, there is one unique next state. This means that 

there is exactly one edge leaving each node. Note that there may be more than one 

edge entering a node. In general, the STG is partitioned into one or more cycles or 

rings, which may have tails, or paths of states that are not part of the cycle itself, but 

eventually lead to the cycle. The first node of each tail has special significance; since 

such a node has no edges leading into it, it corresponds to a state that can not be gener- 
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ated naturally during a test session. We call such a state an unreachable state; in 

[BrAS90], these states are called leaves. 

Each test session begins by putting the system in an initial state; this state is called the 

system seed. This corresponds to picking one node of the STG. Note that it is possible 

to pick an unreachable state as the system seed, since the system is not in test mode 

when we initialize it. Next, the system is clocked; each clock corresponds to moving 

along one edge of the STG to another system state. If the system is clocked enough 

times, it will end up in a state that it has already visited. From that point on, all system 

states generated will be repeats of previously generated states; on the STG, a path 

around and around a cycle is taken, and we say that the system has entered a cycle. 

Note that the test patterns applied to a given combinational logic block also start 

cycling at this point, since the bits in a test pattern are a subset of the bits in the system 

state. As a result, no new test patterns for the combinational logic blocks are gener- 
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ated. Thus, if a system enters a cycle early in a test session, test quality will be low 

regardless of the length of the session. 

All deterministic systems, including circuits utilizing conventional BIST techniques, 

are subject to system state cycling; however, circular self-test path circuits are espe- 

cially likely to enter a system state cycle early in a test session. The shape of the STG 

indicates this susceptibility; ideally, we would like to choose our test session so that 

we travel along a long path in the STG before we enter a cycle. If the STG is com- 

posed of a large number of small cycles, this may not be possible. Similarly, if the 

STG has a large number of tails, we may not be able to avoid cycling, since we can 

choose to travel along at most one of the tails. By looking at the relationship between 

certain circular self-test path structures and the resulting shape of the STG, we gain 

insight into why those structures can result in poor test quality. 

6.3    Register Adjacency 

One cause of bit-level correlation is unit-distance register adjacency [Stro88] 

[POLB88]. This phenomenon, which is illustrated in Figure 6-3, occurs when flip-flop 

fj comes directly after flip-flop^- in the circular self-test path, and is also fed directly 

by flip-flop/j- through the combinational logic of the datapath. From the figure, we see 

that unit-distance register adjacency in an RTL structure can be thought of as bit-level 

reconvergent fanout; the output of flip-flop^- fans out, and the two copies of the bit 
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that was stored mfi meet again, and are recombined, before being stored in £ at the 

next clock. One copy of the bit takes a path through the combinational logic of the 

RTL structure; the other copy travels along the circular self-test path. 

Figure 6-3. The concept of register adjacency. 

Figure 6-4 shows a simple kind of register adjacency. Suppose that the most signifi- 

cant bit of register B has value x. On the next clock, this bit fans out to both inputs of 

the XOR feeding the most significant bit of register A; this correlation of inputs means 

that the most significant bit of A will have value x ® x = 0. This phenomenon occurs 

at each time step of a test session, holding the most significant bit of A constant at 

value 0, and having a devastating effect on the randomness of register A's state: fully 

half of the states can never be realized. This is reflected in the best achievable state 

coverage for register A, which is 0.50. In terms of the STG, we see that one half of the 

system states (i.e., all states for which the most significant bit of A is a 1) are unreach- 

able, and are therefore at the beginning of a tail.   For a circuit of four-bit registers, 

assuming that register 5's states are perfectly pseudo-random (the best possible case), 
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Figure 6-4. A portion of an RTL structure showing unit-distance register 
adjacency. 

register B register A 

randomness 1.00 0.75 

best achievable 
state coverage 

1.00 0.50 

Table 6-1. Metrics for the registers of Figure 6-4. 

register A's randomness is reduced to 0.75, reflecting the fact that while three of the 

bits of A are pseudo-random, one bit is stuck at a constant value. 

Figure 6-5 is another example of register adjacency. As in the last example, the adja- 

cency of registers B and A causes a correlation between the inputs of the XOR gate 

that drives the most significant bit of A. To see why, let the most significant bits of reg- 

isters B and D have values y and x, respectively. On the next clock, the XOR gate will 

have inputs x and x&y, for a result of x&y. At the same time, the y value will shift into 

the least significant bit of B. This means that there is a correlation between the most 

significant bit of register A and the least significant bit of register B; namely, if the 

least significant bit of B has value 1, the most significant bit of A must have value 0. 
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This dependency between bits of the system state holds throughout a test session, 

thereby limiting the system states that can be realized; any system state with l's in 

both the least significant bit of B and the most significant bit of A is unreachable. A 

more comprehensive example, in Table 6-4 of Section 6.4, shows that the presence of 

so many tails in the STG gives circuits with this structure a tendency to cycle. The 

dependency also degrades the randomness of register A; if registers B and D are per- 

fectly random, the most significant bit of register A will have value 1 only one-quarter 

of the time. As a result, when registers B and D have perfectly random states, register 

A's randomness is decreased to a value of 0.94. Although it may still be possible to 

generate all 16 patterns in register A, doing so will require a longer test session. To 

illustrate this, consider the number of clocks that we must apply to the circuit to 

achieve an expected state coverage of 99% for register A, given that system state 

cycling does not prevent us from reaching this level of state coverage entirely. As the 

circuit is now, we must apply 146 clocks; if register A's randomness were 1.0, in con- 

trast, we would have to apply only 72 clocks. 

Furthermore, if registers A and B serve as inputs to some other ALU in the circuit, the 

interdependent between the states of the two registers will make it impossible to 

exhaustively test that ALU. Specifically, any test pattern that has a 1 in the least signif- 

icant bit of B and a 1 in the most significant bit of A can not be generated. 

Unit-distance register adjacency is a consequence of the ordering of registers in the 

circular self-test path, and can easily be identified. We first construct a directed graph 
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Figure 6-5. A second example of distance-1 register adjacency. 

register B register D register A 

randomness 1.00 1.00 0.94 

best achievable 
state coverage 

1.00 1.00 1.00 

Table 6-2. Metrics for the registers of Figure 6-5. 

indicating the data flow from memory element to memory element; in this graph, the 

nodes correspond to the flip-flops of the circuit, and there is an edge from node/- to 

node £ if and only if flip-flop^- feeds directly into flip-flop fj through combinational 

logic. Next, we consider the flip-flops in the circular self-test path, two by two, in 

order. If flip-flop^- directly follows flip-flop^ in the circular self-test path and there is 

an edge from/j- to fj in the graph, we have exactly the situation shown in Figure 6-3, 

and there is register adjacency in our circuit. Register adjacency can usually be 
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avoided by careful ordering of registers in the circular self-test path, using a technique 

like that described in [Stro88]. In the event that no ordering of registers is adjacency- 

free, an extra flip-flop can be inserted into the path to break up the adjacency. While 

this flip-flop is transparent in the normal mode, in test mode it serves to delay the val- 

ues traveling around the circular self-test path by one clock [PiKK92], An alternative 

approach for avoiding the bit-level correlation caused by unit-distance register adja- 

cency involves modifying the design of the test register [AvMc93]. Another approach 

tests whether a particular instance of register adjacency has a significant effect on test 

quality before restructuring the path to remove it [Gage93]. 

The two previous examples are of unit-distance register adjacency: the bit value that 

fans out reconverges after one clock. However, register adjacency can occur at arbi- 

trary distances. Distance-^ register adjacency occurs when the bit value that fans out 

reconverges after d clocks.  Figure 6-6shows a circuit with distance-2 adjacency.  For 

this example, registers are two bits wide. Suppose that the least significant bit of regis- 

ter B has value x. In two time steps, the x value will fan out and travel to both inputs of 

the XOR that drives the least significant bit of register A; one copy of x travels along 

the circular self-test path, and the other travels through the datapath (via register D). 

As a result, the least significant bit of register A will have value x © x = 0. This hap- 

pens at each subsequent clock, after an initial set-up time of one clock. That is, this 

correlation does not occur the very first time the circuit is clocked, but it does occur at 

each clock after that. Once again, the randomness of register A is degraded. 
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Figure 6-6. An example of distance-2 register adjacency. 

register B register D register A 

randomness 1.00 1.00 0.50 

best achievable state 
coverage 

1.00 1.00 0.50 

Table 6-3. Metrics for the registers of Figure 6-6. 

An algorithm for identifying distance-^ register adjacency must first extend the 

directed graph representing data flow from memory element to memory element by 

annotating the edges with distances. All of the original edges have distance 1. If in the 

original graph there is a path from node i to nodey traversing d edges, an edge from / to 

j with distance d is added to the extended graph. Distance-rf register adjacency exists 

between flip-flops fj mdfj if/J- comes d flip-flops after ft in the circular self-test path 

and there is a distance-rf edge from / to) in the graph. 
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6.4    A Shift-Related Cause of Correlation 

Register adjacency is not the only phenomenon that causes bit-level correlation; when 

an arithmetic logic unit in the RTL structure performs a bit-wise operation, correlation 

can arise as a natural consequence of the shifting of the registers in the circular self- 

test path. Consider the circuit fragment of Figure 6-7. Suppose that the least significant 

register B (<" ~| register D 

~1   T 
bitwise 
AND 

"| register A 

1 
flip- 
flop «e- 

x&y 

A (xJty)@v   ,' 

Figure 6-7. A portion of an RTL structure producing bit-level correlation due to 
shifting. 

bits of registers B and D have values x and y, respectively. Since the primary inputs of 

the circuit are held constant at zero during a test session, registers B and D operate as 

ordinary shift registers. As a result, the x and v values travel to the left in lockstep as 

the circuit is clocked. This means that the product x&y is formed at successive outputs 

of the ALU. Correlation occurs when the product x&y from one clock meets with the 

product from the previous clock and cancels out. As shown in Figure 6-7, this happens 

in the second least significant bit of the output register A. The input to the XOR gate 
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from the ALU is simply the product x&y; the input from the circular self-test path is 

the same product, formed one clock cycle earlier, XORed with a value from the circu- 

lar self-test path, (x&y) © v. The product cancels out, leaving a result of v. A similar 

correlation occurs in every second bit of register A. 

The difficulty with this type of correlation is that register A no longer acts like a multi- 

ple input shift register; the cancellation of terms causes A to act like an ordinary shift 

register from the point of view of the circular self-test path. In other words, the values 

shifted out of A onto the circular self-test path are simply a time-delayed version of the 

bits shifted into A. This may affect the randomness directly, and, more importantly, it 

makes the circuit extremely susceptible to system state cycling. Note that when the cir- 

cuit is in test mode, the primary input registers all act as simple shift registers, since no 

inputs are presented to the circuit. The more registers that perform simple shifts 

instead of using the responses of the circuit to find the next state, the more likely the 

system is to cycle. 

The shifting type of correlation described in this section occurs not only for bit-wise 

operations like AND and OR, but also for operations with a bit-wise component. For 

example, this same phenomenon occurs for the ADD function, which is essentially a 

bit-wise XOR with some carry information included. While the cancellation of terms 

for an ADD circuit is not as catastrophic as it is for our AND example, it is still enough 

to significantly degrade test quality. 
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Unlike the register adjacency case, this cause of bit-lev el correlation cannot be 

avoided by re-ordering the registers in the circular self-test path; for our example, it 

does not matter where in the path registers B, D and A lie. Instead, we must pay atten- 

tion to the shift direction of the registers. If we shift input registers B and D in opposite 

directions, the x and y values no longer travel to the left in lockstep, meeting at an 

AND gate at each time step; instead, they meet only once. Similarly, we could choose 

to shift the output register in a direction opposite to that of the input registers; for this 

configuration, values x and y still travel in lockstep, but their product from one time 

step does not cancel out their product from one time step before. Therefore, when con- 

structing a circular self-test path, it is important to take care that not all register ports 

of a bitwise operation are shifted in the same direction. 

Table 6-4 shows the relationship between the choice of shift directions and test quality 

for four-bit AND and ADD examples. For each example, three circular self-test path 

configurations are used. The best achievable state coverage for the ALU and the long- 

est achievable time before the system starts cycling are shown; these are found via 

simulation, using the initial system state or seed that gives the most favorable results. 

In the first configuration, all three registers are shifted in the same direction; this cir- 

cuit suffers from the shifting correlation described above. Note that the AND example 

enters a system state cycle after only twelve clocks. The second configuration avoids 

the shifting problem, but introduces register adjacency. Here, we see that a large num- 

ber of unreachable states, and therefore a large number of tails in the STG, result in 
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circuits that cycle badly; the AND example enters a system state cycle after 36 clocks, 

and the ADD example after 185 clocks. The third configuration shows that the shift 

directions can in fact be chosen to avoid both sources of bit-level correlation. The 

same kind of shifting correlation that occurs in the first configuration will also occur 

when this small example is embedded in a larger circuit. 
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Table 6-4. Shift direction and its impact on test quality. 

Figure 6-8 shows shifting correlation within a larger circuit. For this example, the reg- 

isters are four bits wide. As in the smaller example, shifting correlation causes the out- 

put register to act as a shift register from the point of view of the circular self-test path; 

bit-level correlation in the least significant bit and the third least significant bit of the 
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Figure 6-8. A second example of bit-level correlation due to shifting. 

register ensure that the values shifted out of H onto the circular self-test path are sim- 

ply a time-delayed version of the bits shifted into H. Note that for this circuit, then, all 

registers in the path are essentially shift registers. There are 20 flip-flops in the path; as 

a result, the state of the path will cycle in 20 clocks. This makes it extremely likely that 

the entire system will also cycle in 20 clocks, making this circuit impossible to test 

adequately. 

Identifying shifting correlation in a circuit using the circular self-test path technique 

involves looking for sections of the circuit that perform bitwise, or largely bitwise, 
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operations. When such a section exists, shifting correlation will occur if all input and 

output registers of the section are shifted in the same direction. Therefore, care should 

be taken to choose a set of register orientations such that at least one of the input and 

output registers of the section is shifted in a direction opposite to that of the other reg- 

isters. 

6.5    Summary 

Two sources of bit-level correlation in RTL circuits using the circular self-test path 

technique have been described, along with examples demonstrating the degradation in 

test quality resulting from the presence of the correlation. In avoiding these two 

sources of correlation, constraints are placed on the structure of the circular self-test 

path. The first source of correlation, register adjacency, can be avoided through careful 

choice of the ordering of the registers within the path. The second source of correla- 

tion, which arises from the shifting nature of the circular self-test path, can be avoided 

through careful choice of a shift direction, right or left, for each register in the path. A 

clear understanding of these sources of correlation, and the resulting effect in terms of 

both test patterns that can not be generated and the possibility of system state cycling, 

is the first step in automating the circular self-test path formation process. 

Although the work of this chapter was done with the circular self-test path methodol- 

ogy in mind, much of it is also applicable to the circular BIST methodology. As was 
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reviewed in Chapter Two, the two methodologies are similar; both create a chain out 

of the same kind of test register. Register adjacency can occur in circular BIST cir- 

cuits, and should be avoided using the techniques outlined in this chapter. The shifting 

correlation described in this chapter can also occur in circular BIST circuits. However, 

in the case of circular BIST, system state cycling does not become overwhelmingly 

likely when shifting correlation is present. The reason for this difference is that the cir- 

cular BIST technique uses a test pattern generation register (TPGR) to drive the input 

end of the chain, and a multiple input shift register (MISR) to watch the output end of 

the chain, rather than simply recirculating the system bits the way the circular self-test 

path methodology does. 



chapter 7 BIST Insertion at the Logic 
Level 

In industry today, design and test are often considered separate problems; design of a 

circuit is done without regard to testability, and BIST features are added to the design 

after the fact. The test quality of circuits designed this way can be quite poor; often, 

the underlying structure of the circuit makes it difficult to test using pseudorandom test 

patterns. When faced with such a random pattern resistant design, the circuit designer 

has two options. The first, to re-synthesize the circuit from scratch, this time keeping 

test in mind, is often undesirable. In some cases, well established circuits, known to 

work well, have been described informally, e.g., with block diagrams. Re-synthesis 

would require describing the function of such a circuit formally in the behavioral 

domain; however, the behavior may not be immediately known, or it may be difficult 

to capture the exact behavior in a formal description language such as VHDL. For 

these reasons, re-synthesis may involve a degree of risk that designers are unwilling to 

incur. 

The second option, which is the only alternative when re-synthesis of a design can not 

be done, is to try to enhance the testability of the existing design. This second option is 
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the one explored in this chapter. The goal of this work is to present a systematic 

approach for testability enhancement of existing logic level designs utilizing pseudo- 

random BIST. The approach is to remove the resistance of the circuit to random pat- 

terns in test mode while changing as little of the design as possible. A testability 

metric, entropy, is used to pinpoint problem areas of the design; entropy is calculated 

using probabilistic analysis based on the Markov model presented in Chapter Five. 

Signals with low entropy can make testing difficult by affecting both controllability 

and observability of internal parts of the circuit. 

This chapter next describes a methodology for built-in self-test (BIST) insertion in 

logic level circuits. The methodology is demonstrated on a submodule of an industrial 

logic level design. Fault simulation is used to show that the resulting modified circuit 

designs are indeed more easily tested than the original. 

7.1     Testability Enhancement Technique 

This section describes our testability enhancement procedure. We assume the test par- 

adigm of Figure 7-1, i.e., we assume that in test mode the overall circuit is configured 

T —- —> M 
P 
G 

sequential 
CUT : 

I 
S 

R —- —- R 

Figure 7-1. The basic BIST scheme used. 
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so that the inputs of a sequential module are driven by a test pattern generation register 

(TPGR), and the outputs of the module drive a multiple input shift register (MISR). In 

this way, we can focus on the sequential circuit under test (CUT), assuming that is 

driven by random patterns of known distribution. Essentially, we will be looking 

within a circuit for lines with 1-probabilities that are very close to either 0 or 1. Alter- 

natively, we may look for lines of low entropy, as'defined in Equation 4-1 on page 47. 

The 1-probabilities and entropies for various points in the circuit are calculated using 

the Markov model described in Chapter Five. 

We will take two different approaches in dealing with problem areas in a design. The 

first approach involves the use of the circular BIST methodology within the sequential 

CUT. For this approach, the overall BIST scheme of Figure 7-1 is preserved, but some 

of the flip-flops internal to the CUT are used to form a circular BIST chain. The sec- 

ond approach involves the use of multiplexers to insert test points that alter the func- 

tioning of the circuit during test; a multiplexer, controlled by a signal that indicates 

whether the circuit is in normal or test mode, may serve, for example, to deliver high 

quality test patterns to a portion of the circuit that is not ordinarily highly controllable. 

Our testability enhancement methodology, shown in Figure 7-2, is a two step tech- 

nique. The first step involves the testability enhancement for flip-flops that have low 

entropy. Once the flip-flop entropies have been calculated, testability problems may 

become apparent; since the flip-flops drive the combinational logic, low entropy of the 

flip-flops translates directly into the application of poor quality tests to the gates of the 
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Algorithm TestabilityEnhancement 

Input:      A sequential circuit design. 
Output:   The circuit design, modified to enhance testability. 

Step 1.  Use the Markov model to calculate flip-flop entropies. 

For those flip-flops with low entropy, do testability insertion to 
enhance the entropy. 

If fault coverage of resulting design is satisfactory, stop here. 

Step 2. Within the combinational logic segments, use the Parker-McCluskey 
algorithm to find entropies of internal nodes. 

Select the line nearest the primary inputs that has low entropy. 
Enhance the entropy of that line by doing testability insertion. 
Recompute the internal node entropies. 

If some internal lines still have low entropy, repeat the selection and 
enhancement part of this step. 

Figure 7-2. Overview of testability enhancement technique. 

circuit, and thus into low fault coverage for the combinational logic. Therefore, if any 

flip-flop in the CUT has low entropy, the situation should be remedied. For circuits 

using circular BIST, this may be accomplished by replacing the low entropy flip-flop 

with a test flip-flop that in test mode is part of the circular BIST chain. For circuits 

using multiplexer-based test point insertion, flip-flop entropy can often be raised by 

breaking loops. When Step 1 is complete, all the combinational logic of the sequential 

CUT is driven with high quality test patterns when in test mode. 

If test quality of the circuit is still poor, it is necessary to take a closer look at the com- 

binational logic segments, and to alter the structure of the combinational logic to 
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remove the random pattern resistance [BaMS87] that can make it difficult to test the 

combinational logic using random patterns. This is done in the second step of the test- 

ability enhancement methodology, which involves looking at the entropies of nodes 

internal to the combinational logic segments. We apply the Parker-McCluskey algo- 

rithm [PaMc75] to the combinational logic segments to find signal lines of low 

entropy. Again, there are a number of ways to improve the entropy of individual signal 

lines; we may choose to insert an additional circular BIST flip-flop that is transparent 

in normal mode, or to use a multiplexer to insert a test point. 

7.2     Example Application 

This section describes the circuit that will be used as an example to provide the details 

of the testability enhancement technique. The circuit, shown in Figure 7-3, is a sub- 

module of an existing design provided by Rockwell International. The overall chip 

was designed by Rockwell engineers as a large number of submodules, each of which 

is a sequential circuit. The submodules are quite small, with typically about ten inter- 

nal flip-flops. The submodules are interconnected via intervening registers. 

As a first step, conventional BIST was added to the overall chip in the following sim- 

ple way: the registers of the chip were replaced with special test registers that can act 

as test pattern generators (TPGRs) and multiple input shift registers (MISRs). Thus, 

we test each submodule separately, using the paradigm of Figure 7-1. Our goal is to 
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Figure 7-3. A submodule of an industrial design. 

modify the submodules, if necessary, to make them random pattern testable. We dem- 

onstrate this by applying the testability enhancement technique of Figure 7-2 to the 

example submodule. 

We consider two distinct sets of experiments. The first uses circular BIST within the 

sequential circuit, and the second employs multiplexer-based test point insertion. For 

both sets of experiments, we compare fault coverage, area, and critical delay for the 

original and enhanced variations of the circuit. Fault coverage data are obtained using 

AT&T's GENTEST fault simulator [Davi94]; area and performance figures come 

from the COMPASS Design Automation suite of tools [CODA92]. Areas are found by 

performing layout synthesis using standard cells. Performance is measured in terms of 

the critical delay for the circuit, and comes from a timing verifier in the COMPASS 

suite, using circuit models that include interconnect delay. Area and critical delay fig- 
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ures are for the sequential CUT only, and do not include the TPGR and MISR. Over- 

head for a circuit is calculated with the following formula: 

overhead = 
baseline 

baseline 

where v is the value for the circuit in question, and ^^1^ is the corresponding value 

for a baseline circuit. 

Regardless of which methodology is used for testability enhancement, the first step of 

the testability enhancement methodology requires calculation of all flip-flop 1-proba- 

bilities and entropies. Before this can be done, the combinational logic of the circuit 

must be divided into segments to create an "RTL" view of the circuit. The need for this 

step was described in Section 5.4 of Chapter Five, which describes the 1-probability 

computation. The next subsection describes the segmentation of the combinational 

logic for this example. A second subsection presents flip-flop entropies for the original 

circuit, and describes why the low entropies adversely affect testability. 

7.2.1     Segmentation of combinational logic 

In order to create an "RTL" view of the circuit, we group the gates of the submodule 

into combinational logic segments driving each flip-flop and primary output. This seg- 

mentation of the circuit is shown in Figure 7-4, in which the rectangular boxes are 

multiplexers and the thick lines are multiple signal lines.  There are two important 

aspects to note about the segmentation: 
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Figure 7-4. Combinational logic of circuit, grouped into segments. 
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• Since our Markov Chain model handles only simple D flip-flops, we must 

model any JK flip-flops in terms of D flip-flops, combinational logic, and 

feedback, as shown in Figure 5-16 on page 93. Note that this change is for 

the sake of analysis only; it is not necessary to replace the JK flip-flop in 

the physical circuit. 

• Since a gate may drive more than one flip-flop or primary output (by fan- 

ning out), the combinational logic segments may overlap. For example, OR 

gate G8 is in both CL segment A and B. 

The result of segmentation is a register transfer level view of the sequential CUT; this 

view is shown in Figure 7-5. 

primary inputs (from TPGR) 

CL Segment A 

q STLOCK 

primary output START 
(to MISR) 

Figure 7-5. RTL view of the example circuit. 
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7.2.2     Analysis of flip-flop entropies 

It is to the "RTL" view that we apply the Markov model to compute the flip-flop 1- 

probabilities and entropies. Results of the probabilistic analysis (which required two 

iterations) are shown in Table 7-1. These results bring two serious testability problems 

signal name 1-prob. entropy 

SR [7] to SR [0] 0.5 1 

STLOCK 1 0 

YSCSTR 0 0 

START 0.5 1 

Table 7-1. Flip-flop and primary output 1-probabilities and entropies for the 
original circuit. 

to light: both STLOCK and YSCSTR have entropies of zero in the steady-state. From 

Figure 7-6, which is a fragment of the original circuit affected by the STLOCK signal, 

it is easy to see that once the STLOCK signal goes high, feedback ensures that it stays 

high. Therefore, in the steady state STLOCK has a 1-probability of one, and an 

entropy (using Equation 4-1 on page 47) of zero. A similar problem ensuring that the 

YSCSTR signal stays low is less immediately apparent from the circuit structure. 

These low entropies cause tremendous testability difficulties; when the STLOCK sig- 

nal is high, it serves to block passage of values through NOR gate G4, and in turn 

through AND gates G5, G6, and G7 (see Figure 7-6). Thus, any fault effects observ- 

able at the inputs of these gates will not be observable at the primary output of the cir- 

cuit. Thus, the STLOCK signal, when high, effectively cuts off observability of a large 
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Figure 7-6. Feedback of the STLOCK signal hampers testability. 

section of the circuit. The YSCSTR signal causes similar problems with AND gates 

G6, G7, and G10. 

A first testability enhancement to the circuit should ensure that signals STLOCK and 

YSCSTR do not remain constant. The entropy of these signals can be increased in a 

number of ways. We will explore two ways in this chapter. Using the circular BIST 

methodology, we will replace the low entropy flip-flops with test flip-flops that are 

included in the circular BIST chain. In another experiment, we will use multiplexers to 

break feedback loops when the circuit is in test mode; feedback is a major cause of low 

entropy. A third method for enhancing flip-flop entropy is to use a partial scan chain 

consisting of the flip-flops with low entropy so that the states of these flip-flops can be 

controlled directly during the test session [LiZB93]. 
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7.3     Circular BIST-Based Test Point Insertion 

In this subsection, experiments that use the circular BIST methodology to enhance 

testability are described. The basic scheme used is illustrated in Figure 7-7. Selected 

flip-flops of the sequential CUT are replaced with circular BIST test flip-flops. During 

normal mode operation, these test flip-flops act like regular flip-flops, but in test mode 

they form a circular BIST chain. The first flip-flop in the chain is driven with random 

patterns from one output of the TPGR, and the last flip-flop in the chain drives one 

input of the MISR. 

T —* —»■ 

sequential 
CUT  * 

 =» M 
P f> I 
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■         ■ '—i 
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Figure 7-7. The circular BIST scheme. 

We use the original circuit as a baseline circuit for the experiments described in this 

section. As a first enhancement (following Step 1 of Figure 7-2), flip-flop entropy is 

improved by including flip-flops with low entropy in the circular BIST chain. Thus, 

flip-flops DFF8 and JKFFO are replaced with test flip-flops and configured into a 

chain. A dummy flip-flop was required between DFF8 and JKFFO to prevent register 

adjacency, as described in Chapter Six. Table 7-2 compares flip-flop entropy for the 

original circuit, which we denote Version I, and the circuit variation with increased 
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signal name 
Version I Version II 

1-prob. entropy 1-prob.      entropy 

SR [7] to SR [0] 0.5 1 0.5 1 

STLOCK 1 0 0.5 1 

YSCSTR 0 0 0.5 1 

START 0.5 1 0.5 1 

)le 7-2. Flip-flop and primary ou tput 1-prob abilities and 1 entropies f 
original circuit and the first circular BIST-based enhancement. 

flip-flop entropy, which we denote Version II. From the table, we see that in Version II 

the flip-flops have very high entropy. High entropies ensure that good quality test pat- 

terns are delivered to each combinational logic segment. 

The lower two curves of Figure 7-8 compare fault coverage for the original circuit and 

the first circular BIST variation, Version II. From Figure 7-8, we see that while 

enhancement of flip-flop entropy has improved the fault coverage for the example cir- 

cuit, fault coverage is still not high. This is the case when the combinational logic seg- 
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Figure 7-8. Fault coverage curves for the circular BIST-based circuits. 
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ments are random pattern resistant. One good indication of random pattern resistance 

is low entropy on one or more internal lines of the circuit; if a line has low entropy, one 

of the logic values is difficult to generate on that line. As a result, any gates that are 

driven by that line may be difficult to test, especially if detecting some fault near that 

gate involves controlling the line to the difficult-to-obtain value. 

The second step of the testability enhancement technique of Figure 7-2 obtains the 1- 

probabilities and entropies of internal lines of the circuit by applying the Parker- 

McCluskey algorithm to the combinational logic segments of Figure 7-4. Results for 

Version //are shown in the first two columns of Table 7-3. These results show that 

even though we are supplying each combinational logic segment with uniformly dis- 

tributed pseudorandom patterns, the entropy of internal lines is low. As shown in the 

table, the output of G4 has an entropy of only 0.11615; this also causes low entropy in 

parts of the circuit driven by G4 (G5, G6, G7, etc.). We can obtain a value of 1 at the 

output of G4 only approximately l/64th of the time. Since controlling this node to 

value 1 is necessary for fully testing gates G5, G6 and G7, fully testing the circuit may 

require using an unacceptably long test session. This is reflected in the fault coverage 

curve for Version II; the curve rises slowly instead of reaching a knee and leveling off 

suddenly. 

For our circular BIST experiment, we will improve the entropy at the output of G4 by 

inserting a test flip-flop at this node, so that during test, gates G5, G6, and G7 are not 

driven by G4, but are instead driven directly by the circular BIST chain. The flip-flop, 
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Tab 

gate or node 
Version II Version III 

1-prob. entropy 1-prob. entropy 

MUXO to 
MUX3 

0.5 1 0.5 1 

GO to G3 0.5000 1 0.5000 1 

G4 (observed) 0.1563 0.1162 0.1563 0.1162 

G4 (fanouts) — — 0.5000 1 

G5 0.003906 0.03688 0.1250 0.5436 

G6 0.001953 0.02039 0.0625 0.3373 

G7 0.001953 0.02039 0.0625 0.3373 

G8 0.2529 0.8159 0.3125 0.8960 

G9 0.2500 0.8113 0.25 0.8113 

G10 0.1279 0.5517 0.1563 0.6253 

Gil 0.5640 0.9882 0.5781 0.9823 

STLOCK 0.5000 1 0.5000 1 

G12 (START) 0.5000 1 0.5000 1 

JK function 0.3760 0.9552 0.3906 0.9652 

YSCSTR 0.5000 1 0.5000 1 

e 7-3. Internal node 1-probabilities and entropies for the circular BIST- 
circuit variations. 

-based 

which is transparent in normal mode, ensures randomness at the trouble node during 

test. This variation of the circuit is denoted Version III. Table 7-3 shows that internal 

line entropies for Version III are substantially higher than for Version II. Figure 7-8 

shows that Version III has significantly higher fault coverage than Version I and Ver- 

sion II; note that Version III also reaches high fault coverage much more quickly than 

Version II. 

The majority of the faults not detected in Version III of the circuit are on the asynchro- 

nous reset lines of the flip-flops; since the reset lines are exercised only once at the 
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beginning of the test, it is difficult to tell whether the resets are working correctly. In 

particular, we may not notice if a reset is stuck in its inactive state. In the next set of 

experiments, which are run on exactly the same three circuits as the previous set of 

experiments, we remedy the situation by exercising the reset lines during the test. We 

do so in a pseudorandom fashion; however, we weight the pseudorandom pattern on 

the reset line so that resetting is done infrequently. By resetting infrequently, we can 

catch faults on the reset lines without disrupting the rest of the test too severely. 

Figure 7-9 shows fault coverage curves for the original circuit and the two circular 

BIST variations, this time using pseudorandom asynchronous resets, weighted so that 

the probability of doing a reset at any given clock is one-sixteenth. It is important to 

note that this use of the asynchronous reset invalidates our entropy analysis; the flip- 

flop is artificially brought to the zero state, and so the probability that the flip-flop is a 

zero is higher. In addition, the Markov analysis works with probability distributions in 

the steady-state; and therefore does not apply directly after a reset. 

In the case of the original circuit, the pseudorandom reset does more than allow us to 

catch faults on the reset lines; it also improves the testability of the rest of the circuit. It 

does this by kicking the circuit out of the "locked-up" state that caused the entropies to 

be so low (recall Figure 7-6). This is enough to bring the achievable fault coverage for 

the original circuit up from 41% to 72%; actually, using a pseudorandom reset is 

almost as good as replacing JKFFO and DFF8 with circular BIST flip-flops. If a circuit 

already uses flip-flops with reset capability, this can be an area-effective method for 
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Figure 7-9. Fault coverage curves for the circular BIST-based circuits, using 
pseudorandom asynchronous resets. 

circuit Area in X 
Transistor 

count 
Critical delay 

inns 

Version I 730 x 576.5 530 10.80 

Version II 874 x 568.5 635 13.44 

Version III 954 x 568.5 723 14.84 

overhead for Version II 18.1% 19.8% 24.4% 

overhead for Version III 28.9% 36.4% 37.4%        ! 

Table 7-4. Area and performance figures for the circular BIST-based circuit 
variations. 

raising flip-flop entropy. However, using a pseudorandom reset is not enough by itself 

to attain high fault coverage because of the low entropy of internal lines. 

Table 7-4 shows area and performance characteristics for the three circular BIST- 

based circuit variations. Area overhead is high, especially for Version III. A substantial 

part of the problem here is that we must insert dummy flip-flops to break up register 

adjacency in the circular BIST chain; this would not have been necessary if the flip- 
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flops had not been so interdependent on one another. The inserted test circuitry also 

has a detrimental effect on the critical delay of the circuit. 

7.4    Multiplexer-Based Test Point Insertion 

Instead of using circular BIST, it is possible to use multiplexer-based test point inser- 

tion for testability enhancement. Here, multiplexers are used to deliver high quality 

test patterns to internal parts of the circuit that would not ordinarily be controllable; 

the multiplexers are controlled by a signal that indicates whether the circuit is in nor- 

mal or test mode. 

In this section, experiments that use the multiplexer-based test point insertion to 

enhance testability are described. Since the design engineers suspected that observ- 

ability is a major problem with the submodule of Figure 7-3, we start by taking several 

extra observation points out from internal parts of the circuit to the MISR. We use this 

submodule with added observability as the baseline circuit for the experiments in this 

section, and refer to it as Version I. For the circular BIST-based experiments described 

in the previous subsection, there was no need to explicitly add extra observability 

points to the circuit, since the flip-flops in the circular BIST chain provided observable 

points internal to the circuit. 

As a first enhancement, flip-flop entropy is improved by breaking feedback loops dur- 

ing test mode. Table 7-2 compares flip-flop entropy for the baseline circuit, Version I, 
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and the circuit variation with increased flip-flop entropy. The variation, which is 

denoted Version II, uses multiplexers to break all of the feedback loops in the circuit; 

note that since some of the feedback was inherent in the JK flip-flop, this required 

replacing the JK flip-flop with a D flip-flop and appropriate combinational logic. Dur- 

ing test, lines that are ordinarily driven by feedback are driven directly by the TPGR 

instead. From Table 7-2, we see that the variation has improved entropy. The higher 

the entropy of the inputs to a combinational logic segment, the better the quality of test 

patterns applied to that segment. 

signal name 
Version I Version II 

1-prob. entropy 1-prob. entropy 

SR [7] to SR [0] 0.5 1 0.5 1 

STLOCK 1 0 0.5640 0.9882 

YSCSTR 0 0 0.3760 0.9552 

START 0.5 1 0.5 1 
ble 7-5. Flip-flop and primary ou tput 1-prob abilities an d entropies f 

multiplexer-based circuits. 

Figure 7-10 shows the fault coverage curves for the baseline circuit, Version I, and the 

multiplexer-based variation, Version II. As was the case with the circular BIST experi- 

ments, we see that enhancement of flip-flop entropy improves fault coverage, but not a 

great deal. Again, we move to the second step of the testability enhancement technique 

of Figure 7-2, to take a closer look at what is happening within the combinational 

logic. 1-probabilities and entropies for Version II of the circuit are shown in the first 

two columns of Table 7-3. The values show that the trouble is at the same node as 

before; the output of G4 has low entropy. 
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Figure 7-10. Fault coverage curves for the multiplexer-based circuits. 

gate or node 
Version II Version III 

1-prob. entropy 1-prob. entropy 

MUX0 to MUX3 0.5000 1 0.5000 1 

GO to G3 0.5000 1 0.5000 1 

G4 (observed) 0.1563 0.1162 0.1563 0.1162 

G4 (f anouts) — — 0.5000 1 

G5 0.003906 0.03688 0.1250 0.5436 

G6 0.001953 0.02039 0.0625 0.3373 

G7 0.001953 0.02039 0.0625 0.3373 

G8 0.2529 0.8159 0.3438 0.9284 

G9 0.25 0.8113 0.2500 0.8113 

G10 0.1279 0.5517 0.2188 0.7579 

G7i(STLOCK) 0.5640 0.9882 0.6094 0.9652 

G12 (START) 0.5000 1 0.5000 1 

YSCSTR 0.3760 
  

0.9552 0.4063 0.9745 

Table 7-6. Internal node 1-probabilities and entropies for the multiplexer-based 
circuits. 
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For the multiplexer-based methodology, we will improve the entropy at the output of 

G4 by slicing the circuit at this node; a multiplexer is inserted so that during test, gates 

G5, G6, and G7 are not driven by G4, but are instead driven directly by the TPGR. For 

this approach, the output of G4 must be connected directly to the MISR to make fault 

effect observation possible. This sliced variation of the circuit is designated Version 

III. Table 7-3 shows that internal line entropies for the sliced circuit are substantially 

higher than for the original. Figure 7-10 shows that Version III achieves higher fault 

coverage in significantly less time than Version II. 

As was the case with the circular BIST-based variations, most of the faults remaining 

undetected are on the asynchronous reset lines. Fault coverage curves for the same cir- 

cuits, this time using a weighted pseudorandom reset, are shown in Figure 7-10. 

Again, we see that if the flip-flops of a circuit already have reset capabilities, using a 

pseudorandom weighted reset can be an effective way to improve flip-flop entropy; in 

this case, the use of a pseudorandom weighted reset raised the achievable fault cover- 

age of Version I up from 87% to almost 95%. As was the case with the circular-BIST 

based circuit variations, however, a pseudorandom weighted reset alone is not enough 

to achieve high fault coverage, because it can not remove the random pattern resis- 

tance that causes lines internal to the combinational logic to have low entropy. 

Comparisons of area and performance for the three multiplexer-based circuit varia- 

tions are given in Table 7-7. By comparing these numbers to the results for the circular 

BIST experiment, we see that the multiplexer-based test point insertion requires much 
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less area overhead to do the job. However, the critical delay overhead for Version III is 

a quite substantial 22.8%. The reason for this is that the inserted multiplexers lie on the 

critical path. 
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Figure 7-11. Fault coverage for the multiplexer-based circuits, using a 
pseudorandom asynchronous reset. 

circuit Area in X 
Transistor 

count 
Critical delay 

inns 

Version I 746 x 560.5 530 10.81 

Version II 770 x 584.5 575 12.20        | 

Version III 810x584.5 589 13.28        1 

overhead for Version II 7.6% 8.5% 12.9%       j 

overhead for Version III 13.2% 11.1% 22.8% 

Table 7-7. Area and performance figures fc )r the multiplexe r-based variations 

Work by [LiZB93] points out that it is possible to use gates rather than full multiplex- 

ers to do test point insertion. For our example, we could use an OR gate to slice the cir- 

cuit at the output of gate G4. One input of the OR gate is driven by the output of G4, 

and the other is driven by the TPGR. During test mode, the output of G4 almost 
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always has value zero, so the output of the inserted OR gate has entropy nearly equal 

to one. During normal mode, we must be careful that the TPGR generates a zero, so 

that the inserted OR gate does not affect the functioning of the circuit. Lin's test point 

insertion will have substantially less impact on area and performance, since an OR 

gate is both smaller and faster than a full multiplexer. 

7.5    Summary 

Many existing circuit designs are not sufficiently testable; they require testability 

enhancement, either through complete re-synthesis or small, local design modifica- 

tions. When re-synthesis of a design can not be done, the only alternative is to try to 

enhance the testability of the existing design. The proposed technique for probabilistic 

analysis of sequential gate-level circuits provides a systematic approach for testability 

enhancement of sequential circuits. It has been used to enhance the testability of a 

sample submodule of an industrial design. For the style of design used, i.e., for rela- 

tively small sequential circuits interconnected via system registers, the technique is 

computationally inexpensive, and helps to quickly find areas of random pattern resis- 

tance in the design. These problem areas can then be eliminated with simple design 

modifications. Resulting modified designs enjoy significantly higher fault coverage 

than the original. 



chapter 8 BIST Insertion at the Register 

Transfer Level 

Traditionally, BIST insertion at the register transfer level is done by making each arith- 

metic logic unit (ALU) in a datapath directly testable; controllable registers (TPGRs) 

are placed at each ALU's inputs, and an observable register (MISR) is placed at each 

ALU's output. However, such an invasive addition of test registers may not be neces- 

sary. For example, suppose that the input registers to an ALU are not directly control- 

lable, but that they still generate patterns that are random enough to effectively test the 

ALU. In this case, there is no need to replace the normal system registers with test pat- 

tern generation registers; actually, to do so is often undesirable, since TPGRs are larger 

and slower than ordinary registers. Thus, in selecting registers for BIST insertion, a 

trade-off can be made, with test quality on one side and area and performance on the 

other. This chapter explores this trade-off for register transfer level datapaths. 

145 
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8.1     Experimental Set-Up 

In this chapter, experiments are done with several register transfer level circuits. Three 

testability metrics are used: randomness, expected state coverage, and transparency. 

The testability metrics are computed for the registers of the circuits using the Markov 

model of Chapter Five, and decisions about where to place test registers within the cir- 

cuits are based on the metrics. Fault coverage curves show the effects of the BIST 

insertion decisions on the testability of the resulting circuits. These experiments serve 

two purposes: to validate the Markov model by showing that the analytical predictions 

are close to actual values obtained by simulation, and to show how the metrics can be 

used to compare different BIST configurations in terms of test quality, and therefore to 

guide BIST insertion. 

Analytical predictions for the testability metrics are from the Markov model; computa- 

tion times for the Markov model analysis are for a SPARCstation IPC with 36 MB of 

memory. Actual values for the testability metrics are obtained from a computer pro- 

gram that simulates the functioning of an RTL circuit while in test mode, computing 

the registers' states at each time step. The simulation uses a system state seed of all' 1' 

bits. The choice of system state seed is arbitrary; any seed that does not lead too 

quickly to a system state cycle will produce similar results. 

Layout area, transistor count, and critical delay figures are given so that the trade-off 

between test quality and cost can be better understood. All are derived in the COM- 
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PASS Design Automation suite of tools [CODA92]. Layout area is found by placing 

and routing the circuit. We include transistor count as a supplementary measure of 

area, because layout area depends heavily on the algorithm used for the routing and the 

manufacturing process used. For example, layout area results here are for a process 

with two levels of metallization; if three or four levels are available, the layout areas 

will be considerably different. The critical delay for the circuit is the delay along the 

slowest combinational path in the circuit, and reflects the speed at which the circuit 

can be clocked. It includes both gate delays and interconnect delays based on the rout- 

ing. For all area and performance figures, overhead is given in terms of a version of 

the circuit which contains the minimal amount of hardware needed for the circular 

self-test path technique; overhead for a circuit is calculated with the following for- 

mula: 

v- v . ,       , nun overhead =  , v • nun 

where v is the value for the circuit in question, and vrr^n is the corresponding value for 

the "minimal" circuit. 

Fault coverage curves are from GENTEST, an AT&T fault simulator, and include only 

those faults within the ALUs. The test session for the circuit begins by configuring the 

circular BIST test registers into a scan chain, and shifting in the desired system state 

seed. This initialization phase is not included in the fault coverage curves. Tradition- 

ally, the signature is obtained by observing one element of the circular self-test path 
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for a limited number of clocks at the end of the test session. However, we found this 

difficult to implement in GENTEST; instead, we observed the element throughout the 

entire test session. As a result, our experiments neglect some of the probability of 

aliasing during circuit response compaction. 

In these examples, the values of the testability metrics are used to decide where to 

insert test registers. Low randomness can have an adverse effect on test quality. At 

best, low randomness values require the use of ä longer test session to adequately test 

the ALUs in the circuit; in some cases, however, even an increased test length will not 

help to generate an adequate number of different test patterns. Expected state coverage 

can help distinguish between these two cases. Low transparency can also adversely 

affect test quality by making it difficult to observe the effect of faults, as discussed in 

Chapter Four. 

8.2     Example One: A Cascade 

The first example, shown in Figure 8-1, is a four bit wide cascade of adders and multi- 

pliers that performs the arithmetic function F = (ab) (cd) + (ef) (g + h) . Testabil- 

ity metrics, both from analysis and simulation, are shown in Table 8-1 for two different 

circular self-test path choices. Part (a) of the table corresponds to a version of the cir- 

cuit with a minimal circular self-test path, that is, with a path containing only the pri- 

mary input and primary output registers; for this circuit, which we refer to as Version I, 
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the circular self-test path is (<= REG8, <= REG7, <= REG6, <= REG5, <= REG4, 

<= REG3, <= REG2, <= REG1, <= REG15), where the order shown indicates the 

order of the registers in the path, and <= denotes that the indicated register is shifted to 

the left, from least significant bit to most significant bit.1 2 Randomness (MR), 

expected state coverage (ESC) in 96 clocks, and transparency (MT) of all registers are 

shown. 

REGl I  I REG2 I  ! REG3 I  I REG4 I  I REG5 |  I REG6 I   REG7 |  j REG8 

^JF1" 1 1 

+ 

REG9 REG10 

2 £ 

REGll 
 1  

j REG12 

a £ 
* 

REGl 3 REGl 4 

2 £ 
+ 

j REG15 j 

Figure 8-1. A cascade of adders and multipliers. 

For this circuit with a minimal circular self-test path, the testability metrics of some 

registers not in the path is less than ideal. In particular, registers REG 13 and REG 14 

have low randomness, and registers REG9, REG 10, REGll, and REG 12 have low 

1. We will later use => to denote that a register is shifted to the right. 
2. For each example in this chapter, the order of the registers in the circular self-test 

path, and the orientation or shift direction for each register, were chosen to avoid bit 
correlation problems as described in Chapter Six. 
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REG 1-8 REG9 REG 10 REG11 REG12 REG13 REG14 REG15 

MR Analy. 1 0.9295 0.9295 0.9295 1 0.6389 0.7915 1 

Sim. 0.9999 0.9298 0.9296 0.9295 0.9996 0.6400 0.7912 0.9997 

ESC 
in 96 
elks 

Analy. 0.9981 0.9756 0.9756 0.9756 0.9981 0.7525 0.8875 0.9981 

Sim. 1                0.9375 0.9375 1 1 0.7500 1 1 

MT Analy. 1             | 0.7000 0.7000 0.8670 0.7000 1 1 1 

(a) Version I, with a minimal circular self-test path. 
MR Analy. 1 1 1 1 1 0.9295 0.9295 1 

Sim. 0.9999 0.9999 0.9999 0.9999 0.9999 0.9308 0.9286 0.9999 

ESC 

in 96 
elks 

Analy. 0.9981 0.9981 0.9981 0.9981 0.9981 0.9756 0.9756 0.9981 

Sim. 1 1 1 1 1 1 1 1 

MT Analy. 1 1 1 1 1 1 1 1 

(b) Version II, with registers REG9-12 added to the path. 
Table 8-1. Testability metrics for the cascade. 

transparency. In order to boost these low values, we choose to insert additional BIST 

registers in place of registers REG9, REG10, REG11, and REG12; for Version II of the 

circuit, the circular self-test path is (<=REG8, <=REG7, <=REG6, <=REG5, 

<=REG4, <=REG3, <=REG2, <=REG1, «=REG15, <=REG12, <=REGU, 

<= REG10, <= REG9). Testability metrics for this variation are in part (b) of Table 8-1, 

and are all improved. 

For the circular BIST methodologies, the insertion of a test register boosts both con- 

trollability and observability; that is why our primary inputs have high transparency. 

Note also that although we replaced registers 9 and 10 with test registers for the pur- 

pose of improving transparency, it also brought the randomness of these registers up to 

1. This in turn was sufficient to bring the randomness of register 13 up from a low 
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value of 0.6389 to the more reasonable value of 0.9295, and the randomness of register 

14 up from 0.7915 to 0.9295. 

Table 8-1 shows a good agreement between the analytical values predicted by our 

Markov model and actual values obtained from simulation. In general, we expect a 

closer agreement for randomness than for expected state coverage, because actual val- 

ues for expected state coverage depend heavily on the choice of the system state seed 

for short test sessions. Computation of the testability metrics for both circuits using the 

Markov model required a total of 1.03 CPU seconds. 

Figure 8-2 shows fault coverage curves for the two versions of the circuit. For this 

example, there is not a large difference in the attainable fault coverage; Version I 

leaves only one fault undetected, and Version II leaves no faults undetected. However, 

the curves show that the Version II is significantly more testable than Version I in the 

sense that it reaches high fault coverage much more quickly. Version II reaches 100% 

fault coverage in 105 clocks; in contrast, Version /requires almost three times as much 

time, 300 clocks, to reach its top fault coverage of 99.9%. 

Table 8-2 shows the overhead involved in adding the new test registers to the circuit. It 

shows area and performance figures for the two versions of the cascade. From the 

table, we see that changing registers 9 through 12 into circular BIST test registers 

resulted in a circuit that was less than 9% bigger than the original. The addition also 

slowed the circuit down 20.8%. 
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Figure 8-2. Fault coverage curves for the cascade. 

Area in X 
Transistor 

Count 
Critical Delay 

inns 
Version I 2242 x 1407 4140 10.72 
Version II 2346x1415 4492 12.95 
overhead 5.2% 8.5% 20.8% 

Table 8-2. Area and performance figures for the cascade. 

In practice, a trade-off can be done between the test quality and the impact on area and 

performance. In this example, we could have chosen to insert fewer test points; for 

example, we may have decided to replace registers 9, 10, and 12 with circular BIST 

registers to boost their transparencies of 0.7000 up to 1, but to leave register 11, with a 

transparency of 0.8670, a normal register. This decision would have had less of an 

impact, particularly on area, and would also have resulted in a circuit somewhere 

between Version I and Version II in terms of test time required to achieve high fault 

coverage. 
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8.3     Example Two: An Arithmetic Pipeline 

Our second example, shown in Figure 8-3, is typical of an arithmetic pipeline, and is 

four bits wide. It computes the recurrence relation F(t + 3)  = j-j-r + c(t) F(t+ 1) . 

where a, b, and c are primary input values. Testability metrics for the pipeline are 

shown in Table 8-3. Again, the first version has a minimal circular self-test path; in 

this case, the path is (<= REG3, <= REG2, <= REG1, <= REG7). Version I has good 

transparency throughout; this is because the use of the circular self-test path technique 

adds transparency to the inputs of the circuit, and the high sensitivity of the adder to 

changes in its input makes the middle of the circuit highly transparent. One register of 

the circuit, REG4, has an extremely low randomness value of 0.5883. Version II of the 

circuit removes this problem by placing REG4 in the circular self-test path (<= REG3, 

<= REG2, <= REG1, =>REG4, <= REG7). Computation of the testability metrics for 

both circuits using the Markov model required a total of 1.44 CPU seconds. 

Fault coverage curves for the two versions, given in Figure 8-4, show that Version /fs 

addition of a single test register causes a dramatic improvement in fault coverage; 

attainable fault coverage goes up from 91.8% in Version /to 99.8% in Version II. Table 

8-4, which gives area and performance figures for the two versions of the pipeline, 

shows that the price paid for the added testability is a less than 7% increase in area and 

an 8.5% increase in critical delay. 
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Figure 8-3. An arithmetic pipeline. 

REG 1-3 REG4 REG5 REG6 REG7 

MR Analysis 1 0.5883 0.8854 0.9771 1 

Simulation 0.9929- 
0.9930 

0.5783 0.8835 0.9762 0.9927 

ESC 

(in 96 
clocks) 

Analysis 0.9981 0.6381 0.9650 0.9944 0.9981 

Simulation 1 0.5000 0.9375 1 1 

MT Analysis 1 1 1 1 1 

(a) Version I, with a mini mal circular self-test path. 

MR Analysis 1 1 0.9295 1 1 

Simulation 0.9996 0.9980 0.9336 0.9967 0.9989 

ESC 

(in 96 
clocks) 

Analysis 0.9981 0.9981 0.9756 0.9981 0.9981 

Simula- 
tion 

1 1 1 1 1 

MT Analysis 1 1 1 1 1 

(b) Versioi n II, with R 3G4 adde d to the pe ith. 

Table 8-3. Testability metrics for the arithmetic pipeline. 
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Figure 8-4. Fault coverage curves for the arithmetic pipeline. 

Area in X 
Transistor 

Count 
Critical Delay 

inns 

Version I 1602 x 969.5 1944 10.61 

Version II 1650 x 1001.5 2032 11.51 

overhead 6.4% 4.5% 8.5% 
Table 8-4. Area and performance figures for the arithmetic pipeline. 

8.4     Example Three: A Low Pass Filter 

Our third example, shown in Figure 8-5, is adapted from a low pass filter in 

[COOS93]. The datapath is nine bits wide, using fixed point numbers with two bits 

after the binary point. The 25% and 75% ALUs multiply their single inputs by 0.25 

and 0.75, respectively. 

Version I of the circuit has a minimal circular self-test path. Testability metrics are 

shown in Table 8-5. Because this circuit has chained ALUs, we calculate metrics not 
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Figure 8-5. A low pass filter. 

only at the registers, but also at points a and b. Computation of the testability metrics 

using the Markov model required a total of 3.50 CPU seconds. For this example, trans- 

parency values are trivially very high, because addition is highly sensitive to changes 

1 
in an input, but the randomness of point b is quite low because the multiplication by j 

clears the two most significant bits. In order to improve the randomness at b, we insert 

a test register that is transparent in normal mode. Version II of the circuit inserts a full 

nine bit test register at point b. For this example only two of the nine bits actually have 

low entropy, so we can save area by using a test register of only two bits; we do this in 

Version III. Fault coverage curves for all versions of the circuit are shown in Figure 

8-6. Note that Versions II and III are virtually indistinguishable in terms of fault cover- 

age; in terms of test quality, enhancing only the low entropy bits of point b is suffi- 

cient. Table 8-6 shows the area and performance figures for all three versions of the 

low pass filter; from the figures, it is clearly beneficial to use the smaller, two bit test 

register at point b, since the area overhead is much smaller for Version III than it is for 

3. This is accomplished by creating a version of the low pass filter that has "pseudo-registers" at points 
a and b, and applying the Markov model to that version in the usual way. 
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Version II. The performance overhead for Version III is a bit larger for than for Version 

II. The difference is small, and due to the simulated annealing algorithm used by 

COMPASS to do routing; there is an element of randomness in the algorithm, so if the 

routing were done a second time, the performance numbers might easily be reversed. 

REG1 REG2 a b       | 

MR 
Analysis 1 1. 0.9444 0.7778     ! 

Simulation 0.9860 0.9870 0.9351 0.7750 

ESC (in 
3072 clocks) 

Analysis 0.9975 0.9975 0.7488 0.2500 

Simulation 0.9961 0.9980 0.7500 0.2520 

MT Analysis 1 1 1 1 

(a) Version /, with a minimal circular self-test path. 

MR 
Analysis 1 1 0.9444 1 

Simulation 0.9850 0.9855 0.9345 0.9878 

ESC (in 
3072 clocks) 

Analysis 0.9975 0.9975 0.7488 0.9975 

Simulation 1.000 0.9941 0.7500 1.000 

MT Analysis 1 1 1 1 

(b) Versions II and ///, with a test register at b. 

Table 8-5. Testability metrics for the low pass filter. 

Version I   
Version II  

Version III  

50 100 150 
Time in clocks 

Figure 8-6. Fault coverage curves for the low pass filter. 
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Area in X 
Transistor 

Count 
Critical Delay 

inns 

Version I 1402 x 725 1506 17.88 

Version II 1666 x 857.5 2190 18.05        | 

Version III 1522 x 765 1658 18.12        ! 

overhead for Version II 40.5% 45.4% 1.0% 

overhead for Version III 14.5% 10.1% 1.3%        I 
Table 8-6. Area and performance figures for the low pass filter. 

8.5    Example Four: An Elliptical Wave Filter 

Our final example is derived from a fifth order elliptical wave filter commonly used as 

a benchmark for high level synthesis systems [PaKn89]. First, a four bit wide wave fil- 

ter was synthesized without test features using the SYNTEST high level synthesis sys- 

tem [HPCN92]. Next, since our test effort focuses on the arithmetic logic units 

(ALUs), the assumption that multiplexer control would be held constant during testing 

was made, and so a single path through each multiplexer was chosen. In effect, this 

allowed the removal of all multiplexers and some registers not used for testing from 

the circuit. The resulting circuit is shown in Figure 8-7, and contains reconvergent 

fanout, feedback loops, and self-adjacency. Next, circular BIST features were added 

to the circuit. For this example, a minimal circular self-test path was added: 

(<=REG10, <^REG11, ^REG12, <=REG13, <^= REG4). Testability metrics are 

shown in Table 8-7. Computation of the testability metrics using the Markov model 

required a total of 3.09 CPU seconds. In this case, the randomness and transparency 

values for all the registers are quite high. On the basis of the high testability metrics, it 
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Figure 8-7. An example derived from an elliptical wave filter. 

was decided that it was not necessary to add test features to any more of the registers. 

A fault coverage curve for the circuit, given in Figure 8-8, shows that 100% fault cov- 

erage is quickly reached for the circuit with a minimal circular self-test path. Area and 

performance figures are given in Table 8-8. 

Note that different choices of multiplexer control result in different testability metrics 

for the registers of the circuit; by choosing a path through each multiplexer, we are 

configuring the circuit in a specific way during test. The configuration chosen here 

required only a minimal circular self-test path, but another configuration may require 

additional test registers, resulting in a larger and slower circuit. A further direction of 
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Table 8-7. Testability metrics for the wave filter example. 
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Figure 8-8. Fault coverage curve for the wave filter example. 

Area in A. 
Transistor 

Count 
Critical Delay 

inns 

2186 x 1282.5 3600 12.75 

Table 8-8. Area and performance figures for the wave filter example. 

research might involve how to choose paths through the multiplexers so as to make the 

ALUs of the circuit testable with a minimum of area and performance overhead. 

8.6    Summary 

The examples of this chapter show how testability metrics can be used to guide built- 

in self-test (BIST) insertion in register transfer level datapaths. The testability metrics 

of randomness, expected state coverage, and transparency are used to implicitly cap- 

ture the properties of a successful built-in self-test. Fault coverage results show that 
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BIST insertion done on the basis of these metrics significantly eases the testability 

problem without resorting to an expensive traditional BIST implementation, which 

requires that test registers be placed around each arithmetic logic unit. 



chapter 9 BIST Insertion in the 

Behavioral Domain 

As the complexity of very large scale integration (VLSI) design grows, design synthe- 

sis tools have been developed at higher and higher levels of design abstraction. Over 

the last ten years or so, there are have been many projects to build high level synthesis 

tools that take as input a behavior, or a description of the function to be performed by 

the circuit in algorithm form, and produce a structure, usually a register transfer level 

(RTL) implementation of the behavior. 

Although design synthesis tools continue to move to higher levels of design abstrac- 

tion, design-for-testability (DFT) tools have not kept pace. In Chapter Three, we out- 

lined a number of current projects dealing with testability insertion in high level 

synthesis, based on both BIST and automatic test pattern generation (ATPG). These 

approaches are all limited in some way. Most incorporate testability by imposing their 

own restricted design style; for example, the work of [PaCH91] enhances BIST test- 

ability by removing self-loops in the datapath, and the work of [DePo94] enhances 

ATPG testability by minimizing the number of large feedback loops. Most current 

high level synthesis for testability approaches lack the flexibility to coordinate with 

163 
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general purpose synthesis tools, and many lack testability analysis capability to guide 

the synthesis process. 

This chapter presents a new method for test synthesis in the behavioral domain based 

on BIST. Specifically, we have developed a technique for BIST insertion in behavioral 

design descriptions that coordinates through a common VHSIC hardware description 

language (VHDL) interface with other synthesis tools in the behavioral and structural 

domains. Our approach operates on a given design behavior, expressed in behavioral 

VHDL, that describes the desired behavior of the design during normal mode opera- 

tion. The basis of our approach is to derive a test behavior from the design behavior. 

The test behavior, which is also expressed in VHDL, describes the behavior of the 

design in test mode, and is derived by fixing any testability problems in the design 

behavior. Thus, the test behavior describes in essence the BIST insertion for the 

design. A merging of the normal-mode design behavior and the test-mode test behav- 

ior is then synthesized to produce a testable design with inserted BIST structures. 

One key aspect of our approach is the use of behavioral testability metrics that quan- 

tify the controllability and observability of signals embedded within a behavior. By 

using these metrics to quantify the testability of behaviors, we can modify behaviors 

before design synthesis even begins so as to ensure that the resulting circuit, when syn- 

thesized by a general purpose high level synthesis tool, will be easily testable using a 

simple BIST scheme. It should be noted that our behavioral insertion can employ not 
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only our own test metrics but also test metrics developed by others, for example, those 

of [PeKu94], based on flow graph analysis of a behavior. 

Another key aspect of our research has involved exploration of the connection 

between behavioral testability and testability of physical implementations of the 

behavior. By showing what ramifications a low testability signal in the behavior can 

have on testability at the gate level once the behavior is synthesized, we provide a link 

between our behavioral testability metrics and structural testability of the synthesized 

circuit. 

Our approach goes beyond current approaches that focus exclusively on the datapath 

by developing a methodology that produces circuits that are completely testable, both 

datapath and controller together. Behavioral insertion is used to enhance the testability 

of the datapath, while structural insertion is used for the controller. The fact that our 

approach is designed to be used with any general purpose high level synthesis system 

adds flexibility to our approach. 

The chapter is organized as follows. Section 9.1 describes the minimal behavioral 

BIST scheme for datapaths, and explains the rationale behind the scheme. Section 9.2 

shows how our testability metrics are used as the basis of a test point insertion method- 

ology in the behavioral domain to improve the testability of the datapath. Section 9.3 

describes the structural test point insertion that we use to improve the testability of the 

controller and the interface between the datapath and the controller. Section 9.4 
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describes our overall test scheme, which uses the behavioral test scheme to test the 

datapath and a circular BIST scheme to test the controller. Section 9.6, Section 9.7, 

and Section 9.8 provide results for three example circuits, and Section 9.9 is a sum- 

mary. 

9.1     A Behavioral Test Scheme 

Conventional BIST schemes for datapaths partition the datapath into small kernels, 

and test each kernel separately. The simplest conventional test scheme breaks the data- 

path up so that each kernel contains a single functional unit (ALU). Test pattern gener- 

ation registers (TPGRs) are placed at the inputs of each kernel, and multiple input shift 

registers (MISRs) are placed at the outputs of each kernel, so that each ALU is tested 

separately. Test scheduling determines which kernels can be tested in parallel. 

Many deterministic or automatic test pattern generation (ATPG) based approaches 

also rely on partitioning of the datapath. For example, the work of [BhJh94] uses 

behavioral information to find a test environment for each ALU in a datapath individu- 

ally. By setting the control in a special way so as to allow test vectors to be justified at 

the inputs to the ALU and test responses to be propagated from the output of the ALU 

to the primary outputs, this method in effect separates the ALU from its behavioral 

environment during test. 
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In contrast, our approach tests the datapath as a whole; our test scheme, which we call 

minimal behavioral BIST, is shown in Figure 9-1 as viewed in both the behavioral and 

structural domains. In the behavioral domain, we separate the signals and variables of 

a behavior into three disjoint subsets: input signals, output signals, and internal vari- 

ables. Our scheme makes all input signals directly controllable by mapping them onto 

BIST input registers in the register transfer level (RTL) circuit implementation of the 

behavior, and makes all output signals directly observable by mapping them onto 

BIST output registers in the RTL. The scheme is minimal in the sense that no insertion 

is done within the behavior; no internal variables are made BIST. In the structural 

domain, this means that the datapath is tested as a whole by placing a TPGR across all 

the primary inputs (Pis) to the datapath, and an MISR across all the primary outputs 

(POs). During test mode, as the TPGR generates test patterns, the datapath is exercised 

according to its behavior for which it was synthesized. 

An important consequence of our behavior-based scheme in the structural domain is 

that we exercise every single connection and component in the circuit. This approach 

is in contrast to traditional BIST approaches; in approaches that focus on the arith- 

metic logic units, some registers and multiplexers may not be part of any kernel, so 

that some components may be neglected. In addition, interconnections between ker- 

nels may be neglected. A similar limitation exists for the ATPG-based work of 

[BhJh94]; concentrating on the arithmetic logic units does not guarantee high fault 

coverage for the overall datapath, so if high enough fault coverage is not obtained, the 
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Figure 9-1. Behavioral and structural views of minimal behavioral BIST scheme. 
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method must add an extra step that focuses on the registers or multiplexers that were 

missed. By exercising the datapath according to the behavior, we can guarantee that all 

parts of our datapath will be thoroughly exercised, because each control mode of each 

component is used at some point during the behavior. For example, if the datapath 

contains a three-to-one multiplexer, each of the three paths through the multiplexer 

will be used at some point if the datapath is exercised according to the behavior. If one 

of the paths were not exercised by the behavior, then a three-to-one multiplexer would 

not have been synthesized in the first place; a two-to-one multiplexer would have been 

used instead. 

Exercising the datapath circuit according to the behavior for which it was synthesized 

even while testing is intuitively appealing for a number of reasons. The first is that we 

eliminate the difficult question of how to partition the circuit into kernels, and how to 

schedule the testing of the kernels. Secondly, the control signals that we need to test 

our datapath are almost exactly those control signals that we use for our datapath in 

normal mode. This means that our test controller is relatively simple, and easily 

embedded within the system controller with a minimum of area overhead. 

Note that some special care must be taken in the design of the components to be sure 

that each component is testable using only its defined control modes. For example, 

suppose that a three-to-one multiplexer is implemented with two control mode bits. 

The multiplexer has three control modes, but four possible combinations of control 
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signals. The multiplexer must be designed such that the fourth, undefined control 

mode is not needed to test the multiplexer. 

The minimal behavioral BIST scheme will yield high fault coverage for a datapath 

only if the datapath can be successfully tested by applying pseudorandom patterns at 

its primary data inputs. Behavioral testability insertion is used to modify the design 

behavior so that the synthesized datapath will meet this requirement, regardless of the 

high level synthesis tool used. In order to describe the testability of signals embedded 

within a behavior, we use the randomness and transparency metrics defined in Chapter 

Four.   In the next section, we describe our procedure for behavioral testability inser- 

tion. 

9.2     Behavioral Testability Insertion 

This section describes the use of testability metrics in the behavioral domain to pin- 

point and correct testability problems in behaviors. 

9.2.1     Basic concepts 

We do testability insertion in behaviors by means of a new concept that we call the test 

behavior. This concept is based on the addition of a test mode in the behavioral 

domain that is generally different from the normal mode behavior, or design behavior. 

The test behavior can be generated by applying a series of local behavioral-for-test 
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transformations to the design behavior. These transformations or modifications are 

driven by our test metrics with the aim to enhance the testability qualities of the behav- 

ior. 

The modified behavior is capable of executing both the design behavior and the test 

behavior. The concept is pictured in Figure 9-2. A behavioral switch determines which 

of the two behaviors is executed. Since the modified behavior is a merging of the 

design and test behaviors, we call it the design-and-test behavior. When the design- 

and-test behavior is synthesized, the result is a circuit that can be run either in normal 

mode, or in a mode more conducive to test. Thus, the resulting structure does not have 

testability problems. 

In general, behavioral-for-test transformations can produce test behaviors that bear lit- 

tle resemblance to the design behavior. For example, a test behavior, after it is synthe- 

operational mode 

behaA 
N,           switc 

rioral 
h 

normal/ \test 

design 
behavior 

test 
behavior 

Figure 9-2. The design-and-test behavior concept. 
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sized, may target the testing of all ALUs of the circuit structure in parallel by 

reconfiguring all registers as BIST in test mode. We have decided to restrict our trans- 

formations such that the test behaviors generated are very close to the design behavior. 

The rationale is that such test behaviors are easily generated and easily synthesized 

with the design behavior in a unified way by a synthesis system. Furthermore, with 

this approach the test controller is easily embedded in the system controller. 

Design Behavior Design-and-Test Behavior 

Transformation for 
Controllability 

Transformation for 
Observability 

••. 

(g\ if) 

A Data Flow 
Graph 

1 

(ä r 
• 

y 

Controllable 
point 

V 

foplj 

A 

SELECT   \ 
fop2l 

ESCAPE 
oplj 

(ÖP^l 

Observable 
point 

Figure 9-3. Transformations for the behavioral test scheme. 

Two typical behavioral-for-test transformations are shown in Figure 9-3. SELECT and 

ESCAPE serve to enhance the controllability and observability, respectively, of inter- 

nal behavioral variables. When these transformations are applied, an input or output 

BIST signal is inserted in the behavior; in the structural domain, this corresponds to 

the insertion of a primary input or output register. However, in this scheme no internal 

BIST variables are inserted in the behavior. This means that any binding of internal 
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variables into registers by the synthesizer will not be affected by the BIST insertion; 

therefore the binding can be done independently of the BIST insertion. The inserted 

SELECT nodes are implemented using multiplexers that bring in a new primary input; 

ESCAPE nodes are implemented with the addition of new primary output. Note that 

these new primary inputs and outputs do not require the use of additional I/O pins; 

these new primary inputs and outputs are connected only to the TPGR and the MISR 

used for test. 

The testability insertion process begins with the design behavior, and, using behavior- 

for-test-transformations, modifies it to produce the test behavior. The goal is to do as 

few modifications as are necessary to produce a behavior that is testable. We define a 

behavior to be testable if all its internal variables have randomness values above the 

threshold Rtsh, and transparency values above the threshold Ttsh. The values of the 

thresholds come from empirical analysis based on fault coverage; at the present, we 

are using Rtsh = 0.79 and Ttsh = 0.40. 

In what follows, we first describe the overall testability insertion procedure. Next, we 

motivate this choice of procedure with an example illustrating the relationship 

between behavioral testability and testability of the synthesized structure. Finally, we 

end this section by describing how the overall testability insertion procedure uses 

behavioral-for-test transformations to fix local testability problems. A complete exam- 

ple of the testability insertion procedure is given with the results in Section 9.6. 
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9.2.2     Testability insertion procedure 

The testability insertion process is iterative in nature, and uses the randomness and 

transparency metrics to pinpoint testability problems in the behavior. Low randomness 

or transparency indicates potential controllability or observability problems that may 

negatively impact the testability of the RTL structure synthesized from the behavior. 

The overall analysis and insertion procedure is shown in Figure 9-4. It begins by com- 

puting the randomness values of all signals and variables within a behavior. Those sig- 

nals and variables with randomness below the threshold Rtsh are considered candidates 

for controllable point insertion. Of the candidates, one nearest the primary inputs is 

selected; this is because controllable point insertion will affect the randomness not 

only of the insertion point, but also of all signals and variables driven by the insertion 

point. The exact nature of the insertion done depends on the cause of the low random- 

ness at the selected signal or variable; the various causes of low testability are 

described in the last part of this section, along with the appropriate insertions. Once 

insertion is done to improve randomness at the selected signal or variable, the random- 

ness values for the behavior are recomputed, and the process iterates until all random- 

ness values are above the threshold. 

The analysis defers decisions about transparency improvement until after all random- 

ness improvement has been done. This is because a change in randomness may affect 

transparency, but a change in transparency has no effect on randomness. (For an expla- 

nation of this, see page 56.) Once all randomness values are above the threshold Rtsh, 
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Figure 9-4. The behavioral testability insertion procedure. 

transparency values are computed for all signals and variables, in the behavior. All sig- 

nals and variables with transparency below the threshold Ttsh are considered candi- 

dates for observable point insertion. Of the candidates, one closest the primary outputs 

is selected; this is because observable point insertion will affect the transparency not 

only of the insertion point, but also of all signals that drive the insertion point. As was 

the case with controllable point insertion, the exact nature of the insertion depends on 

the cause of the low transparency. Once observable point insertion has been done to 
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improve the transparency of the selected signal or variable, all transparencies are 

recomputed. The process iterates until all transparency values are above the threshold. 

9.2.3     Behavioral versus structural testability 

One important aspect of our work is that we require that all signals and variables of 

our final test behavior have testability metrics above the thresholds. Figure 9-5 illus- 

trates why we make this strict requirement. Part (a) of the figure shows two addition 

x    y 

MR=1I     MR=1 

L+J op 1 

a    b 

MR = .51   / MR = .4 

+ J op 2 

(a) a data flow graph fragment. 

MR = 1    .5    1    .4 
x    a    y    b 

+ ALU 

(b) the structure created when op 1 and op2 
are bound to the same physical adder. 

Figure 9-5. Example of relationship between behavior and structure. 

operations from a data flow graph. One addition (opl) has highly random data inputs, 

while the other (op2) does not. Part (b) of Figure 9-5 shows a physical implementation 

obtained by binding operations opl and op2 to the same physical adder. From the point 

of view of testing the adder, there is no need to boost the randomness of the inputs to 

the second operation. The good quality test patterns that the adder receives when oper- 
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ation opl is being performed are adequate to test the adder, so it does not matter that 

the test patterns received when operation op2 is being performed are of low quality. 

However, the focus of our approach is to test the complete datapath; we test not only 

the arithmetic logic units, but also the multiplexers, registers, and interconnections. 

Note that although the adder in Figure 9-5 will be fully tested, the input multiplexers 

will not; without some kind of testability insertion, one input to each multiplexer has 

low randomness, and so the test patterns that the multiplexers receive are of low qual- 

ity. For this reason, our methodology insists that insertion be done to enhance every 

low testability signal or variable in a behavior. This approach has another benefit, in 

addition to the fact that it allows a complete test of the datapath as a whole; it also 

lends itself well to a pre-synthesis approach, because the testability insertion needed is 

independent of the choices made during binding. This means that our testability inser- 

tion approach does not require a special high level synthesizer; it is appropriate for use 

with any general purpose high level synthesis tool. 

9.2.4     Three causes of low testability 

This subsection describes how insertion is done to improve the testability of a signal or 

variable. Suppose that a signal or variable has low testability, which we define as hav- 

ing either randomness below the threshold Rtsh or transparency below the threshold 

Ttsh. In some cases, a SELECT or ESCAPE transformation is used directly at the point 

of unacceptable testability to improve the controllability or observability. In other 

cases, it is more beneficial to do insertion at a signal or variable slightly removed from 
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the unacceptable point. We now use examples to show the three possible causes of low 

testability and the proper insertion for each. 

Figure 9-6(a) shows low randomness at a variable due to an inherent inability of a 

function to transfer randomness. Although the inputs to the integer divider are com- 

pletely random, the nature of division is such that the output has poor randomness. In 

this case, there is no way to remove the point of low randomness entirely, but we can 

make sure that the low randomness signal is not used to provide test patterns for any 

part of the circuit. Thus, if our original design behavior contains a structure like that of 

Figure 9-6(a), we use a SELECT transformation to provide direct control of the low 

randomness variable downstream of the divider during test. In doing so, we must also 

use the ESCAPE transformation to insert an observable point, so that we can observe 

the response of the behavior upstream of the divider; otherwise, this part of the behav- 

ior will "dead-end" when the circuit is in test mode. Figure 9-6(b) shows the proper 

test behavior for this example. The design-and-test behavior will behave as shown in 

part (a) of Figure 9-6 when in design mode, and as shown in part (b) of the figure when 

in test mode. Note that while the low randomness variable still exists in the data flow 

graph, it no longer provides test patterns to any part of the behavior. 

Figure 9-7(a) shows low randomness at a variable due to correlation among the inputs 

to the operation driving the variable. The figure shows a multiplier being used to com- 

pute the square function; the output of the multiplier has low randomness because the 

square function has a limited output space. In this case, it is most beneficial to use a 
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Figure 9-6. Insertion when functionality causes low randomness. 

SELECT transformation to break the correlation by providing a new, independent sig- 

nal at one operation input during test mode. The data flow of the transformed behavior 

in test mode is shown in Figure 9-7(b). Note that by breaking the correlation, all low 

randomness variables are removed, and all operations receive high quality test pat- 

terns. There are two reasons for using insertion to break the correlation, rather than 

doing the insertion directly at the point of low randomness, as we did in the previous 

example. The first is that by removing the correlation, we can improve the testability 

metrics by inserting a single controllable point, rather than the controllable/observable 

pair needed in the previous example. The second stems from the fact that the correla- 

tion makes it difficult to test the multiplier. Although in the original behavior the two 

inputs to the multiplier have high randomness values, their high degree of correlation 

severely restricts the test patterns received by the multiplier. 
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Figure 9-8(a) shows low transparency at a variable that is due neither to functionality 

nor correlation. Here, the low transparency is caused by gradual degradation of trans- 

parency as we move up the data flow graph. The primary output of the graph is 

directly observable, and therefore has transparency one. One level up, the transparency 

drops to a value of 0.50; although this value is above the threshold, it is low enough to 

cause unacceptable transparency one level beyond that. In this case, it is most benefi- 

cial to use an ESCAPE transformation to do the insertion at the variable of medium 

transparency, as shown in Figure 9-8(b); in this way, all transparencies are brought 

above threshold with a single additional observation point. In contrast, if insertion is 

done directly at the low testability points, two observable points are needed. Also, 

when insertion is done directly at a low testability point, the low testability point is not 

completely eliminated; this is shown in Figure 9-9. The insertion of the observable 

point adds a fanout branch to the behavior. While the source of the fanout branch has 

enhanced observability, one branch still has low observability. At the register transfer 
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level, this can correspond to a multiplexer with poor observability, as shown in part (c) 

of Figure 9-9. 
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(b) data flow after insertion of an 
observable point. 

Figure 9-8. Insertion when gradual degradation causes low transparency. 

9.3     Structural Testability Insertion for the Controller 

While it is possible to evaluate the testability of the datapath in the behavioral domain, 

we do insertion for the controller and the interface between the controller and the data- 

path in the structural domain. The controller is implemented as a finite state machine, 

as shown in Figure 9-10. We improve the testability of the controller by adding circu- 

lar BIST capabilities to the state flip-flops. During test, the state flip-flops linked 
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together into a chain that can be configured as either a circular BIST register or an 

ordinary serial shift register. 

In addition, we do some structural test point insertion at the interface between the con- 

troller and the datapath. The interface consists of the signals created by the controller 

to control the datapath, and includes both multiplexer select controls and register load 

controls for the datapath. The interface is tested while the datapath is tested using the 

behavioral test scheme described in Section 9.1. Thus, the interface lines are observed 

through the datapath while the datapath is operating in its design mode. 

We decide where test point insertion is necessary in the interface by devising observ- 

ability metrics for the interface control lines. A problem on a multiplexer select line is 

quite easy to see, as it causes the datapath to operate on incorrect data during one or 

more control steps. For this reason, we assign all multiplexer select lines transparency 

values of one. 

A problem on a register load line can be more difficult to detect. For example, suppose 

that a register load line is stuck active, so that the register is inadvertently loaded at 

each control step. This will only be noticed if the inadvertent loads corrupt data before 

the data can be used, i.e., if the register is asked to hold data for more than one control 

step and is unable to do so because of the inadvertent loads. Thus, the transparency of 

the register load lines depends on the pattern of reads and writes for the registers. The 

transparency metrics are computed by combining structural information about how the 
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signals and variables of the behavior are bound to the registers of the datapath with 

behavioral information about when the signals and variables are written and read in 

the scheduled data flow graph. We use the scheduled data flow graph fragment of Fig- 

Rl 

( w j w, y loadRl 

UJ loadRl = load(w) OR load(y) 

R2 

x, z loadRl 

load R2 = load (x) OR load (z) 

Figure 9-11. A scheduled data flow graph fragment. 

ure 9-11 as an example. First, all the signals and variables of the scheduled data flow 

graph are divided into two classes: those that are used only in the control step after 

which they are created, and those which are used two or more control steps after they 

are created. In our example, variables w, y, and z are of the first class, and x is of the 

second class. If all signals and variables bound to a register are of the first class, the 

load line for that register is assigned a transparency value of zero. If at least one signal 

or variable bound to a register is of the second cla>s, the load line for that register is 

assigned a transparency value of one. Suppose that in our example, w and y are bound 

to one register Rb and x and z are bound to another register R2. The transparency value 

of Ri is then zero, while the transparency value of R2 is one. The reason that it is 
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impossible to see a stuck-active fault on the load line for register Rj is that Rj is never 

asked to hold its value. 

For the register load lines with transparency values of zero, structural observable point 

insertion is done. An additional primary output is added to the datapath to watch one 

bit of the register, so that inadvertent loads can be seen. For the example, we should 

watch one bit of register Rj. This brings the transparency of the load line for register 

Rj up from a value of zero to a value of one, so that we can see whether the register's 

load line is working properly. 

9.4     Overall Test Scheme 

Our goal is to ensure testability of the complete physical implementation of a behavior, 

including both datapath and controller, and the interface between the two, as shown in 

Figure 9-12. We accomplish the overall test by using three test sessions. The first test 

session is designed to catch faults on the reset lines of the state flip-flops; these faults 

can prevent proper initialization of the state, causing the circuit to behave unpredict- 

ably. This short test session configures the state flip-flops in the controller in a serial 

shift chain. It starts by shifting in a detenninistic pattern that is the complement of the 

reset state. Then, it resets the flip-flops, and shifts out the state. In this way, it is possi- 

ble to detect if any state flip-flop does not reset properly. 



186 

X 
H 
< 
ON 

< 

< 

o 

< 

< 

3 
Q. 
3 
O 
et 

1 

3 a. a 

■s 
CO 

If 
03 

T3 

c/) 
« s 
o 

F§ c o o 
s 
o 

to 

et c 
60 

C 
o 

13 

OS w 

o 
H 

O 
u 

o 
a. u 

3 
CO 

CA o 
U a 

a 
a. 

3~ 

O   u 

13 
o 

o u 
H 

o u 

R 
CO es 
crt B 

BJ> 
«3 
S w 
tu 5 
X u 

Figure 9-12. A datapath / controller pair. 



187 

The second test session uses the behavioral test scheme to detect faults within the data- 

path, which consists of registers, arithmetic logic units, and multiplexers. During this 

session, we operate the controller in normal mode, so that it creates the proper control 

signals to operate the datapath according to the behavior. We then use a TPGR to pro- 

vide test patterns for the datapath, and an MISR to observe the outputs of the datapath. 

Note that it is necessary to run the datapath in both design and test mode; while only 

test mode is necessary to test the main part of the datapath, it is necessary to use design 

mode to fully test the multiplexers that implement the behavioral switch between the 

two modes. For this reason, we drive the behavioral mode control (test control signal) 

from the TPGR. 

The third test session is designed to detect faults in the combinational logic of the con- 

troller. This includes both the logic that determines the next state of the controller from 

the current state, and the logic that decodes the proper control signals from the current 

state. For this test session, we configure the state register of the controller into a circu- 

lar BIST register. The shift input of the register is driven by the TPGR, and the shift 

output of the register is observed by the MISR [Davi94]. All outputs of the controller 

are observed by the MISR, and all inputs of the controller, including the status and 

external status lines, are driven by the TPGR. 

The order of the test sessions is not important, and was chosen for simplicity of imple- 

mentation. We chose to test the reset faults first because doing so requires a determin- 

istic pattern, and it was easy to design our TPGR so that the deterministic pattern we 
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need is shifted out first. Circuitry on chip is used to create the proper control signals to 

move from test session to test session. 

9.5    Background for Experiments 

The rest of this chapter is devoted to examples of our behavioral BIST insertion 

scheme. For each example, we start with a design behavior written in VHDL. All of 

the examples presented in this chapter use four bit wide signals. We apply our behav- 

ioral BIST insertion procedure to the design behavior to derive a design-and-test 

behavior. Next, we synthesize the design-and-test behavior, following the steps of the 

normal ASIC design flow (see Figure 2-10 on page 24). We also synthesize the origi- 

nal design behavior directly, for the purposes of comparison.To underscore the point 

that our BIST insertion procedure is not designed specifically for use with a particular 

high level synthesis system, we use two different systems, the SYNTEST high level 

synthesis system developed at Case Western Reserve University [HPCN92] and the 

Behavioral Design Assistant (BdA) developed at the University of California at Urv- 

ine [RaGa94]; thus, we are able to conclude that the success of our method does not 

rely on using a specific style of design. 

When high level synthesis is complete, we have a register transfer level datapath and 

control flow in the form of a state diagram. Logic level synthesis is done using the 

COMPASS Design Automation suite of tools [CODA92], using a finite state machine 
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implementation for the controller. At this point, structural circular BIST insertion is 

done within the controller for the design-and-test version, as described in Section 9.3. 

In addition, the testability metrics for the interface control signals are computed, and 

additional test points are added where necessary to improve the observability of the 

interface. 

Fault coverage curves are found for the resulting logic level circuits using AT&T's 

GENTEST fault simulator, and the curves for the design-and-test versions are com- 

pared to curves for the original design. The probability of aliasing within the MISRs is 

neglected. Although the datapath and the controller are tested together as a unit, the 

fault coverage results are separated into two curves; this is done to make clear how 

much of the fault coverage increase comes from the behavioral insertion in the datap- 

ath, and how much comes from the structural insertion in the controller. 

In order to understand the cost of our method, we supply area and performance figures 

for both the design and design-and-test versions of the examples. Both area and perfor- 

mance are derived from a layout level version of the circuits, synthesized from the 

logic level using the COMPASS Design Automation suite of tools. Area is expressed 

as a transistor count. Performance is captured by the critical delay, which is the delay 

along the slowest combinational path in a circuit. Critical delay determines the top 

speed at which a circuit can be clocked. For all area and performance figures, over- 

head is given by: 
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overhead = 
vd&t-vd 

vd      ' 

where v^&t is the value for the design-and-test version of the circuit, and vd is the cor- 

responding value for the original design. 

9.6    Example One: A Polynomial Evaluator 

We demonstrate our iterative method for deriving a testable behavior from an original 

behavior on an example that evaluates the third degree polynomial 

3 2 ax + bx +cx + d. The first step of our method requires the computation of the ran- 

domness of the variables in the behavior; the randomness values are shown in Figure 

9-13(a), superimposed on a data flow graph for the polynomial. One randomness 

value, at m2, falls below the threshold of Rtsh = 0.79. Controllable point insertion is 

used to improve the randomness at m2; in this case, since the low randomness is 

caused by correlation between the inputs of mi, we use insertion to break the correla- 

tion, in exactly the same way described in Figure 9-7 of Section 9.2. Figure 9-13(b) 

shows the data flow graph after the insertion; for this graph, all randomness values are 

above the randomness threshold. 

At this point, the method considers the transparency metrics. Figure 9- 14(a) is the 

same data flow graph as Figure 9-13(b), but this time the transparency values for each 

signal and variable are shown. Two signals, at a and the leftmost branch of x, fall 
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design behavior intermediate behavior 

(a) before controllable point 
insertion. 

(b) after controllable point insertion. 

Figure 9-13. The data flow graph for the polynomial evaluator with annotated 
randomness values. 

intermediate behavior test behavior 

.44 

(a) before observable point insertion. (b) after observable point insertion. 
Figure 9-14. The data flow graph for the polynomial evaluator after controllable 

point insertion with annotated transparency values. 
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below the threshold of Ttsh = 0.40. Note that it is important to consider branches sepa- 

rately, as they have different transparency properties. This time, the cause of the low 

testability is a gradual degradation of transparency, like that described in Figure 9-8 of 

Section 9.2. The transparency at si and ml is above the threshold, but low enough to 

adversely affect the transparency further up. Here, we improve the transparency by 

inserting an observable point at si. The final data flow graph for the test behavior is 

shown in Figure 9- 14(b), with all transparency values above the threshold. Note that 

since observable point insertion does not affect randomness values, this final data flow 

graph also has all randomness values above the threshold (as shown in Figure 

9-13(b)). 

The actual behavior synthesized is a merging of the original behavior (the design 

behavior) of Figure 9-13(a) and the derived testable behavior (the test behavior) of 

Figure 9-14(b). This merged behavior, the design-and-test behavior, is shown side by 

side with the original in Figure 9-15. The triangles in the design-and-test behavior 

denote divergence and merging of control. Which way control flows after the diverge 

node depends on the value of the test mode input; one path is for the design behavior, 

and the other path is for the test behavior. VHDL descriptions for the original design 

behavior and the design-and-test behavior are shown in Figure 9-16; the diverge and 

merge nodes of the data flow graph become an (/"statement in VHDL. 

The design-and-test behavior of Figure 9-16 was synthesized into a datapath at the 

register transfer level (RTL) and a control flow graph (state diagrams) using the SYN- 
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Figure 9-15. Scheduled data flow graphs for the polynomial evaluator. 
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ENTITY example IS ENTITY example IS 
PORT (a, b, c, d, PORT (a, b, c, d, x. 

x: IN BIT_VECTOR(3 DOWNTO 0); newx: IN BIT_VECTOR(3 DOWNTO 0); 
out: OUT BIT_VECTOR(3 DOWNTO 0) test: IN BIT; 

out. 
); newout: OUT BIT_VECTOR(3 DOWNTO 0) 

END example; ); 
END example; 

ARCHITECTURE behavior OF example IS ARCHITECTURE behavior OF example IS 
BEGIN BEGIN 
PROCESS (a, b, c, d. x) PROCESS (a, b, c, d. x, newx, test) 

VARIABLE M1, M2, M3, M4, VARIABLE Ml, M2, M3, M4, 
S1.S2, S3: INTEGER; SI, S2, S3: INTEGER; 

BEGIN BEGIN 
Ml :=a * x; Ml :=a * x; 
SI :=Ml+b; Sl:=Ml+b; 

newout <= S1; 
IF (test = '0') THEN 
M2 := x * x; 

M2 :=x * x; ELSE 
M2 := x * newx; 

END IF; 
M3:=S1*M2; M3:=S1*M2; 
M4 :=c * x; M4:=c*x;                                                | 
S2:=M4 + d; S2:=M4 + d;                                              j 
S3 :=S2+M3; S3:=S2 + M3; 
out <= S3; out <= S3; 

END PROCESS; END PROCESS; 
END; END; 

(a) design version, i.e., as originally (b) design-and-test version, i.e., after 
designed. behavioral testability insertion. 

Figure 9-16. The polynomial evaluator behaviors, written in VHDL. 

TEST high level synthesis system [HPCN92]. The original design behavior was also 

synthesized for the sake of comparison. The RTL datapath for the design-and-test 

behavior is almost identical to the datapath for the design behavior. The datapath for 

the design-and-test version is shown in Figure 9-17, with the new elements in bold. 

The design-and-test version has two additional registers, one each for the inserted con- 

trollable and observable points, and an additional flip-flop to hold the test mode input. 

In addition, one of the three-to-one multiplexers in the original datapath was changed 
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to a four-to-one multiplexer to pass the new controllable point, newx, through to the 

multiplier. 

( test ) (newx 1 (IT)  < a j i c 

* 

(ml m2)   jm3,m4) 

T^I rai 

"\A 

fsl,s2,s3) 

register 

■\~ 7 

mux 

ALU 

status 
(to controller) 

f out j ( newout) 

Figure 9-17. The datapath for the testable polynomial evaluator behavior as 
synthesized by SYNTEST, with inserted elements in bold. 

The control flow graphs for the design and design-and-test controllers are also very 

similar, and are shown in Figure 9-18. For the original design, which has no condition- 

als, the control flows in a straight line from control step 0, when the primary inputs are 

read, to control step 6, when the final output is written. For the testable design, the 

only difference is a branch in control step 2 that allows the controller to implement 

either ml = x ■ x for design mode operation or ml = x ■ newx for testable mode 

operation. 

At this point, the synthesis was completed to the logic level, and structural circular 

BIST insertion was done within the controller. In addition, consideration of the test- 

ability metrics for the interface control signals necessitated the addition of some 
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Figure 9-18. Control flow graphs for the polynomial evaluator. 
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observable points at the interface between the datapath and the controller. This 

required watching one bit each of the register that stores a, the register that stores test, 

and the register that stores m3 and m4. Fault coverage results for the datapath and con- 

troller are shown in Figure 9-19. The results show that the circuit synthesized from the 

design-and-test behavior is substantially more testable. Attainable fault coverage rises 

in the datapath as a result of the behavioral test point insertion, and in the controller as 

a result of the structural test point insertion. Further, fault simulation shows that the 

test scheme described provides very high fault coverage for the overall circuit, both 

datapath and controller together. 
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Time in clocks 

(b) for the controller. 
Figure 9-19. Fault coverage curves for the polynomial evaluator as synthesized by 

SYNTEST 

Area and performance figures for the SYNTEST versions of the polynomial evaluator 

are shown in Table 9-1. The increase in area for the datapath is due to the addition of 

two registers to hold new x and new out, the addition of a flip-flop to hold the test mode. 
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circuit 
transistor count critical delay in ns 

datapath controller datapath controller 

design 1890 446 13.13 6.35 

design-and-test 2227 699 13.35 7.93 

overhead 18% 50% 2% 25% 

Table 9-1. Area and performance figures for the polynomial evaluator as 
synthesized by SYNTEST. 

and the replacement of a two-to-one multiplexer with a larger three-to-one multiplexer 

(see the bolded elements of Figure 9-17). The increase in critical delay is due to the 

fact that the three-to-one multiplexer has a larger delay than the original two-to-one 

multiplexer. 

In some cases, area can be saved in the testable datapath by not bringing in a com- 

pletely new controllable point; often, a controllable signal already in the datapath can 

be re-used. For this example, it is possible to re-use the signal d instead of adding a 

new signal newx; when this is done, the area overhead for the testable datapath goes 

down to 9%, with no degradation in attainable fault coverage. This is particularly 

effective for this design style, for which each primary input requires its own register. 

The increase in area and delay for the controller is due to the circular BIST insertion. 

The overhead for this example is quite steep, with a 50% increase in area and a 25% in 

critical delay. Part of the area overhead problem is that the controllers for these kinds 

of datapaths are very small; in this case, the controller has just three state bits and 

about twenty gates, so the circular BIST functionality adds a substantial percentage. 

Note that the controller is only a small percentage of the overall circuit; for this four 
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1 
bit-wide example, it is less than 7 the size of the datapath. Further, if an eight bit- or 

sixteen bit-wide version of the datapath were synthesized, the controller would not 

change, so the controller would become even a smaller percentage of the whole. Thus, 

overhead in the controller is not as large a concern as overhead in the datapath. 

test newx        x        a        c 

■^ 

* 

( ml I { m2)! m3 I f m4 , 

L 

b       d 
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sil  ( s2 )  f s3 

status 
(to controller) 

r > 
latch 

mux 

\/ / 
/ 

/ 

( newout )        (   out 

TT   1 

ALU 

port 

Figure 9-20. The datapath for the testable polynomial evaluator behavior as 
synthesized by BdA, with inserted elements in bold. 

Next, the polynomial evaluator experiment was repeated, this time using the Behav- 

ioral Design Assistant (BdA) to perform high level synthesis instead of SYNTEST. 

The resulting datapath for the design-and-test version is shown in Figure 9-20, with 

the elements inserted to enhance testability highlighted in bold. The design style is sig- 

nificantly different from that used by SYNTEST; latches are used instead of registers, 

and there are no memory elements at the primary inputs of the datapath. In addition, 

the multiplexers used by BdA are different from those used by SYNTEST; the BdA 

multiplexers use one-hot encoding on their select lines. Figure 9-21 shows fault cover- 
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age curves; like the SYNTEST version, there is significant improvement for both the 

datapath and the controller. Area and performance figures for the BdA version of the 

polynomial evaluator are shown in Table 9-2. 
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(b) for the controller. (a) for the datapath. 

Figure 9-21. Fault coverage curves for the polynomial evaluator as synthesized 
by BdA. 

circuit 
transistor count critical delay in ns 

datapath controller datapath controller 

design 1264 561 12.54 8.61 

design-and-test 1364 921 12.66 11.18 

overhead 8% 64% 1% 30% 

Table 9-2. Area and performance figures for the polynomial evaluator as 
synthesized by BdA. 
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9.7    Example Two: A Differential Equation Solver 

Figure 9-22 shows the data flow for a second example that implements a differential 

(jmj 

.99/.66 

.93/1X^/  1/1 
r + 

iyout) 

Figure 9-22. The data flow graph for the differential equation solver, with 
annotated randomness / transparency pairs. 

equation solver, a standard high level synthesis benchmark [GDWL92]. The anno- 

tated randomness and transparency values show that for this behavior, no behavioral 

test point insertion need be done; all testability values are above the thresholds. Thus, 

the difference between the original and testable versions for this example is the struc- 

1. The arithmetic logic units marked "*3" multiply their single input by three. 
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tural insertion done within the controller and at the interface between the controller 

and the datapath. Fault coverage curves for the design and design-and-test versions of 

the differential equation solver are shown in Figure 9-23. The difference in fault cov- 

erage between the design datapath and the des ign-and-test datapath is due to the addi- 

tion of some test points at the interface between the controller and datapath to increase 

the observability of the interface, according to the rules given in Section 9.3 (see Fig- 

ure 9-11). 
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(a) for the datapath. (b) for the controller. 
Figure 9-23. Fault coverage curves for the differential equation solver as 

synthesized by SYNTEST 

Area and performance figures for the differential equation solver are given in Table 

9-3; since no insertion is done within the datapath, there is zero overhead for that part 

of the circuit. The overheads for the controller are very similar to those in the polyno- 

mial evaluator example. 
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circuit 
transistor count critical delay in ns 

datapath controller datapath     controller 

design 2373 522 12.98     |      6.44 

design-and-test 2373 728 12.98            7.84 

overhead 0% 39% 0%             22% 

ible 9-3. Area and t )erformance i figures for the differential equation solv 
synthesized by SYNTEST. 

9.8    Example Three: The Facet Example 

Our final example is another high level synthesis benchmark called the facet example 

[GDWL92]. Its operations include addition, multiplication, division, and the logical 

operations AND and OR. Figure 9-24 and Figure 9-25 show the steps of the behavioral 

test point insertion. Part (a) of Figure 9-24 shows the data flow graph for the facet 

example with randomness values annotated on each edge. Two edges, the ones coming 

from the division and the logical AND operations, have randomness values below the 

threshold of 0.79. Of these two candidate edges, the one closest the primary inputs is 

selected for improvement. In this case, the cause of low randomness is an inherent 

inability of the integer divider to transfer the randomness at its inputs to its output. Fol- 

lowing the testability insertion guideline of Figure 9-6, one controllable / observable 

point pair was inserted to slice the data flow graph at the output of the divider. The 

new data flow graph is shown in Figure 9-24(b) with new randomness values. Note 

that the insertion was enough to bring the randomness at the output of the logical AND 

operation up above the threshold. 
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At this point, we are done with the randomness part of the behavioral test point inser- 

tion procedure, and we move on to consider transparency. Figure 9-25(a) shows the 

same data flow graph as Figure 9-24(b), this time annotated with transparency values. 

Two signals have transparency below the threshold of 0.40; here, the cause is a gradual 

degradation in transparency. An observable point is inserted at a node of medium 

transparency to fix the problem; the resulting data flow graph is shown in Figure 

9-25(b), with all transparency values above the threshold. At this point, we are done 

with our behavioral test point insertion procedure, and the data flow graph of Figure 

9-25(b) is our derived test behavior. 

design behavior 

{ vl )       fv2 )       ( v4 j 

intermediate behavior 

(vTO)     (v6j       (vT) 

outZ)       (newout) 

(b) after the insertion of a controllable / 
observable point pair. 

Figure 9-24. The data flow graph for the facet example with annotated randomness 
values. 

(a) before test point insertion. 
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intermediate behavior test behavior 

newinj ( v6 j       f vl )       f v2 )       { v4 )       (vlO)    (newin) 

.67      ~T99      "7% /.79 /.55       /.SO 
/\9''     ' ' 

(outT) (out2)       hewonj fnewout2)        foutl) ijoiit2)     ( newout) 

(a) before observable point insertion. (b) after observable point insertion. 
Figure 9-25. The data flow graph for the facet example with annotated 

transparency values. 

The resulting fault coverage curves for the facet example synthesized using SYN- 

TEST are shown in Figure 9-26. There is a substantial gain in fault coverage for the 

datapath due to the behavioral test point insertion; there is also a substantial gain for 

the controller due to the structural circular BIST insertion. Area and performance fig- 

ures for the SYNTEST version are shown in Table 9-4. The facet example was also 

run using BdA instead of SYNTEST for the high level synthesis. Fault coverage 

curves for this experiment are shown in Figure 9-27, with area and performance fig- 

ures in Table 9-5. The BdA version shows results similar to the SYNTEST version, 

despite the difference in design style. Area and performance overheads for both the 

SYNTEST and BdA versions are similar to those obtained for other examples. 
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Figure 9-26. Fault coverage curves for the facet example as synthesized by 

SYNTEST. 

circuit 
transistor count critical delay in ns 

datapath controller datapath controller 

design 
1 

2927 408 11.74 5.59 

design-and-test 3410 717 11.86 7.98 

overhead 17% 76% 1% 43% 
Table 9-4. Area and performance figures for the facet example as synthesized by 

SYNTEST. 

9.9    Summary 

In conclusion, we have presented a methodology for testability insertion in datapath / 

controller pairs. The methodology uses behavioral analysis and insertion to enhance 

the testability of the datapath, and structural analysis and insertion to enhance the test- 

ability of the controller and the interface between the datapath and the controller. The 
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Figure 9-27. Fault coverage curves for the facet example as synthesized by BdA. 

circuit 
transistor count critical delay in ns 

datapath controller datapath controller 

design 1780 474 11.07 6.77 

design-and-test 1980 856 11.07 10.67 

overhead 11% 81% 0% 58% 
ble 9-5. Area and pei *formance figures for the 

BdA. 
facet examp e as synthesiz 

combination allows us to achieve high fault coverage for the overall circuit, both data- 

path and controller together. 



chapter lo Concluding Remarks 

This dissertation develops methodologies for BIST insertion across the design hierar- 

chy. It demonstrates that despite the vast differences among circuits at different levels 

of design abstraction, the basic principles of testability remain the same. Regardless of 

the level of design abstraction, a good test relies on the ability to deliver good quality 

patterns to the circuit elements, and to propagate the effect of faults to the primary out- 

puts. Thus, the testability concepts that apply at the gate level are equally applicable at 

the register transfer and algorithmic levels. 

Furthermore, regardless of the level of design abstraction at which testability enhance- 

ment is done, a balance must be achieved, with test quality on one side, and area and 

system performance on the other. To be seen in full context, a gain in fault coverage 

must be weighed against the price of adding extra test circuitry to the chip, and the per- 

formance lost when the system must be slowed down because test circuitry has 

intruded on the critical paths. Throughout this dissertation, we make this trade-off 

clear by placing fault coverage curves side-by-side with layout areas, transistor counts, 

and critical delays. 

208 
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The consideration of testability can begin at any point in the ASIC design flow. It is 

best to consider testability as early in the design flow as possible. Ideally, this means 

thinking about testability before any kind of synthesis begins, when a design descrip- 

tion is at the algorithmic level in the behavioral domain. In Chapter Nine, a methodol- 

ogy for adding testability to behaviors prior to high level synthesis is presented. This 

method for behavioral test point insertion is combined with a behavioral test scheme 

that provides high fault coverage for the datapath portion of the circuit. Structural test 

point insertion and a circular BIST scheme are added for the controller portion, to pro- 

vide a high quality test of the overall datapath / controller pair. 

A major strength of our methodology at the algorithmic level is the fact that it does not 

rely on the use of a specific design style. Experiments with two different high level 

synthesis systems show significant gains in fault coverage for two different design 

styles. Since the method is generic with regards to design style, it can be used to aug- 

ment an existing synthesis process with a minimum of fuss. Another strength of the 

behavioral test scheme presented in Chapter Nine is the fact that the control signals 

needed for the datapath during test are almost the same as the ones used in normal 

mode. This means that the test controller can be easily embedded within the design 

controller, with minimal changes to the control state diagram. 

Although it is best to consider testability as early as possible in the design flow, it is 

not always possible to start in the behavioral domain. High level synthesis from behav- 

ioral descriptions is a fairly new concept, and many circuits are still designed starting 
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at the register transfer level. In Chapter Eight, we present a testability insertion meth- 

odology appropriate for these circuits. Examples using the circular self-test path tech- 

nique show that by using testability metrics to choose where to place test points, we 

can significantly improve testability, either in terms of attainable fault coverage or the 

number of test patterns needed to achieve high fault coverage. 

There are times when even a register transfer level analysis can not be done. Some cir- 

cuits are inherently gate level, and must be treated as such. Chapter Seven deals with 

testability insertion in gate level circuits. There, the goal is to enhance the testability of 

the circuit while modifying the circuit as little as possible. We show two variations on 

the testability insertion methodology, one based on circular BIST and the other on test 

point insertion using multiplexers. In both cases, the insertion is used to systematically 

provide good quality pseudorandom test patterns to the combinational logic of the cir- 

cuit, and to combat random pattern resistance within the combinational logic. The 

methodology is demonstrated on a submodule of an industrial design; both the circular 

BIST and the test point variations show significant improvement in fault coverage. 

Whether dealing with gate level, register transfer level, or algorithmic level circuits, 

there are some structural details that must be handled carefully when the methodology 

of choice is circular BIST or the circular self-test path technique. Chapter Six outlines 

two problems that can occur, both due to bit level correlation. The first, register adja- 

cency, is a by-product of the order of the circular BIST test flip-flops within the path. 

The second is a kind of correlation inherent in the shifting nature of the path, and was 
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identified first in this work. When present in a circuit, these two kinds of correlation 

can severely degrade test quality. Identification of these problems is a necessary and 

major step towards being able to do circular BIST and circular self-test path insertion 

automatically. 

The cornerstone to the BIST insertion methodologies of Chapter Seven, Eight, and 

Nine is the set of testability metrics presented in Chapter Four. These metrics play a 

major role in the circular self-test path correlation analysis of Chapter Six as well. Our 

controllability metrics, randomness and expected state coverage, were borrowed from 

previous research; our testability metric, transparency, is new to this work. The 

Markov chain model used to calculate the metrics, detailed in Chapter Five, is an 

advance over the earlier models on which it was based in terms of the way that it mod- 

els correlation due to reconvergent fanout and indirect feedback. 

It is important to note that although we chose in this work to use randomness, expected 

state coverage, and transparency to quantify the testability of BIST circuits, the BIST 

insertion procedures presented do not rely on the use of a specific set of testability 

metrics. Any appropriate set of testability metrics may be used. As seen in Chapter 

Three, the survey of related research, there has been a great deal of interest in high 

level testability metrics recently, all with a different emphasis, or designed to help 

attain a different goal. We believe that by changing the underlying metrics, our test- 

ability insertion procedures can be easily modified for other purposes. For example, 

we believe that the insertion procedures need not be limited to BIST; with an appropri- 
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ate set of metrics, they could be used for automatic test pattern generation (ATPG)- 

based testability insertion as well. We plan to test this theory using the algorithmic 

level methodology. 

We also plan to do some additional work in the area of testing controllers. In our algo- 

rithmic level work, we use circular BIST to augment the testability of our finite state 

machine controllers, inserting the circular BIST at the gate level. We would like to 

move the consideration of testability up to a higher level of design abstraction. It is dif- 

ficult to see how testability insertion could be moved all the way up to the algorithmic 

level, since there is no concept of a controller until the datapath is created during high 

level synthesis. However, it may be possible to do testability insertion directly after 

high level synthesis, while the controller is in the form of a state diagram. Two recent 

projects at other universities have looked at modifying state diagrams to make control- 

lers more easily tested using automatic test pattern generation [ChKA92] [KaCA93] 

[KaCA95] [PoRe93]. We would like to explore the properties of controllers that are 

important to a BIST scheme, and perhaps to develop a similar methodology that is 

appropriate to BIST, and that blends well with the behavioral BIST scheme we are cur- 

rently using to test the datapath portion of the circuit. The goal of such a methodology 

would be to improve on the area overheads that are necessary to do a full circular 

BIST insertion in the controllers; in Chapter Nine, we saw that these overheads ranged 

from 50% to 81% for our examples. 
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